Quantifying Vocal Mimicry in the Greater Racket-Tailed Drongo: A Comparison of Automated Methods and Human Assessment


Autoria(s): Agnihotri, Samira; Sundeep, PVDS; Seelamantula, Chandra Sekhar; Balakrishnan, Rohini
Data(s)

2014

Resumo

Objective identification and description of mimicked calls is a primary component of any study on avian vocal mimicry but few studies have adopted a quantitative approach. We used spectral feature representations commonly used in human speech analysis in combination with various distance metrics to distinguish between mimicked and non-mimicked calls of the greater racket-tailed drongo, Dicrurus paradiseus and cross-validated the results with human assessment of spectral similarity. We found that the automated method and human subjects performed similarly in terms of the overall number of correct matches of mimicked calls to putative model calls. However, the two methods also misclassified different subsets of calls and we achieved a maximum accuracy of ninety five per cent only when we combined the results of both the methods. This study is the first to use Mel-frequency Cepstral Coefficients and Relative Spectral Amplitude - filtered Linear Predictive Coding coefficients to quantify vocal mimicry. Our findings also suggest that in spite of several advances in automated methods of song analysis, corresponding cross-validation by humans remains essential.

Formato

application/pdf

Identificador

http://eprints.iisc.ernet.in/48910/1/plo_0ne_9-3_2014.pdf

Agnihotri, Samira and Sundeep, PVDS and Seelamantula, Chandra Sekhar and Balakrishnan, Rohini (2014) Quantifying Vocal Mimicry in the Greater Racket-Tailed Drongo: A Comparison of Automated Methods and Human Assessment. In: PLOS ONE, 9 (3).

Publicador

PUBLIC LIBRARY SCIENCE

Relação

http://dx.doi.org/10.1371/journal.pone.0089540

http://eprints.iisc.ernet.in/48910/

Palavras-Chave #Centre for Ecological Sciences #Electrical Engineering
Tipo

Journal Article

PeerReviewed