968 resultados para Algebraic Bethe Ansatz
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Filosofia - FFC
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Construction techniques with ruler and the compasses, fundamental on Euclidean geometry, have been related to modern algebraic theories such as solving equations and extension of bodies from the works by Paolo Ruffini (1765-1822), Niels Henrik Abel (1802-1829) and Evariste Galois (1811-1832). This relation could provide an answer to some famous problems, from ancient Greece, such as doubling the cube, the trisection Angle, the Quadrature of the Circle and the construction of regular polygons, which remained unsolved for over two thousand years. Also important for our purposes are the notions of algebraic numbers, transcendental and the criteria for constructability, of those numbers. The objective of this study is to reconstruct relevant steps of geometric constructions with ruler (unmarked) and the compasses, from the elementary to the outcome buildings, in the nineteenth century, considering those mentioned problems.
Resumo:
In this paper, we present new constructions of ideal lattices for the Rayleigh fading channel in Euclidean spaces with full diversity. These constructions are through totally real subfields of cyclotomic fields, obtained by endowing their ring of integers. With this method we reproduce rotated versions of algebraic lattices where the performance in terms of minimum product distance is related with the field determinant.
Resumo:
Let G be a group, let S be a subgroup with infinite index in G and let FSG be a certain Z2G-module. In this paper, using the cohomological invariant E(G, S, FSG) or simply E˜(G, S) (defined in [2]), we analyze some results about splittings of group G over a commensurable with S subgroup which are related with the algebraic obstruction “singG(S)" defined by Kropholler and Roller ([8]. We conclude that E˜(G, S) can substitute the obstruction “singG(S)" in more general way. We also analyze splittings of groups in the case, when G and S satisfy certain duality conditions.
Resumo:
Based on the cohomology theory of groups, Andrade and Fanti defined in [1] an algebraic invariant, denoted by E(G,S, M), where G is a group, S is a family of subgroups of G with infinite index and M is a Z2G-module. In this work, by using the homology theory of groups instead of cohomology theory, we define an invariant ``dual'' to E(G, S, M), which we denote by E*(G, S, M). The purpose of this paper is, through the invariant E*(G, S, M), to obtain some results and applications in the theory of duality groups and group pairs, similar to those shown in Andrade and Fanti [2], and thus, providing an alternative way to get applications and properties of this theory.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Pós-graduação em Engenharia Mecânica - FEIS
Resumo:
Pós-graduação em Matemática em Rede Nacional - IBILCE
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)