980 resultados para Albacete, Joan Manel -- Intervius
Resumo:
Este trabajo analiza cómo se puede crear valor a través del uso de las TIC. Para ello se utiliza el Modelo de creación de valor en e-business desarrollado por Amit y Zott (2001) y se aplica a una tipología de nuevos intermediarios que opera en el sector de los contenidos digitales: gregadores de noticias. Para lograr este objetivo, se ha realizado un estudio exploratorio y un estudio de casos a través de entrevistas personales con informadores estratégicos y un análisis del contenido de las páginas web de 56 empresas relacionadas con el sector y cuestionarios, principalmente Se han analizado empresas de EEUU, Canadá, España, Francia, Alemania, Reino Unido y Suiza
Resumo:
Conferència emmarcada dins el marc del III Workshop Biblioteca UdG, on els membres del Grup de Treball de Formació presenten un resum estadístic i conclusions de la formació de Graus que s'ha realitzat al llarg del primer trimestre del curs 2009-2010
Resumo:
La revista Engega entrevista la Dra. Anna M. Geli, rectora de la Universitat de Girona
Resumo:
Montserrat Tura és consellera de Justícia de la Generalitat. Del 2003 al 2006, ho va ser d’Interior i, abans d’entrar al Govern, va ser alcaldessa de Mollet durant 16 anys. Destaca pel seu coratge i decisió a l’hora d’afrontar reptes polítics, per la seva capacitat de gestió i pel seu compromís ineludible amb la democràcia i el país. Ha estat present en la signatura del conveni de col·laboració entre la Càtedra de Cultura Jurídica de la UdG i el Consell General del Poder Judicial que ha tingut lloc a la Facultat de Dret
Resumo:
L' ús de tècniques de la intel·ligència artificial per a la detecció, la diagnòsi i control d' errors
Resumo:
La qualitat d'ona en el servei elèctric
Resumo:
Control de la qualitat de la Xarxa elèctrixa
Resumo:
Proposes a behavior-based scheme for high-level control of autonomous underwater vehicles (AUVs). Two main characteristics can be highlighted in the control scheme. Behavior coordination is done through a hybrid methodology, which takes in advantages of the robustness and modularity in competitive approaches, as well as optimized trajectories
Resumo:
In the context of the round table the following topics related to image colour processing will be discussed: historical point of view. Studies of Aguilonius, Gerritsen, Newton and Maxwell. CIE standard (Commission International de lpsilaEclaraige). Colour models. RGB, HIS, etc. Colour segmentation based on HSI model. Industrial applications. Summary and discussion. At the end, video images showing the robustness of colour in front of B/W images will be presented
Resumo:
We propose a probabilistic object classifier for outdoor scene analysis as a first step in solving the problem of scene context generation. The method begins with a top-down control, which uses the previously learned models (appearance and absolute location) to obtain an initial pixel-level classification. This information provides us the core of objects, which is used to acquire a more accurate object model. Therefore, their growing by specific active regions allows us to obtain an accurate recognition of known regions. Next, a stage of general segmentation provides the segmentation of unknown regions by a bottom-strategy. Finally, the last stage tries to perform a region fusion of known and unknown segmented objects. The result is both a segmentation of the image and a recognition of each segment as a given object class or as an unknown segmented object. Furthermore, experimental results are shown and evaluated to prove the validity of our proposal
Resumo:
We present a new approach to model and classify breast parenchymal tissue. Given a mammogram, first, we will discover the distribution of the different tissue densities in an unsupervised manner, and second, we will use this tissue distribution to perform the classification. We achieve this using a classifier based on local descriptors and probabilistic Latent Semantic Analysis (pLSA), a generative model from the statistical text literature. We studied the influence of different descriptors like texture and SIFT features at the classification stage showing that textons outperform SIFT in all cases. Moreover we demonstrate that pLSA automatically extracts meaningful latent aspects generating a compact tissue representation based on their densities, useful for discriminating on mammogram classification. We show the results of tissue classification over the MIAS and DDSM datasets. We compare our method with approaches that classified these same datasets showing a better performance of our proposal
Resumo:
This paper proposes a hybrid coordination method for behavior-based control architectures. The hybrid method takes advantages of the robustness and modularity in competitive approaches as well as optimized trajectories in cooperative ones. This paper shows the feasibility of applying this hybrid method with a 3D-navigation to an autonomous underwater vehicle (AUV). The behaviors are learnt online by means of reinforcement learning. A continuous Q-learning implemented with a feed-forward neural network is employed. Realistic simulations were carried out. The results obtained show the good performance of the hybrid method on behavior coordination as well as the convergence of the behaviors
Resumo:
The purpose of this paper is to propose a Neural-Q_learning approach designed for online learning of simple and reactive robot behaviors. In this approach, the Q_function is generalized by a multi-layer neural network allowing the use of continuous states and actions. The algorithm uses a database of the most recent learning samples to accelerate and guarantee the convergence. Each Neural-Q_learning function represents an independent, reactive and adaptive behavior which maps sensorial states to robot control actions. A group of these behaviors constitutes a reactive control scheme designed to fulfill simple missions. The paper centers on the description of the Neural-Q_learning based behaviors showing their performance with an underwater robot in a target following task. Real experiments demonstrate the convergence and stability of the learning system, pointing out its suitability for online robot learning. Advantages and limitations are discussed
Resumo:
This paper presents a hybrid behavior-based scheme using reinforcement learning for high-level control of autonomous underwater vehicles (AUVs). Two main features of the presented approach are hybrid behavior coordination and semi on-line neural-Q_learning (SONQL). Hybrid behavior coordination takes advantages of robustness and modularity in the competitive approach as well as efficient trajectories in the cooperative approach. SONQL, a new continuous approach of the Q_learning algorithm with a multilayer neural network is used to learn behavior state/action mapping online. Experimental results show the feasibility of the presented approach for AUVs
Resumo:
This paper describes a method to achieve the most relevant contours of an image. The presented method proposes to integrate the information of the local contours from chromatic components such as H, S and I, taking into account the criteria of coherence of the local contour orientation values obtained from each of these components. The process is based on parametrizing pixel by pixel the local contours (magnitude and orientation values) from the H, S and I images. This process is carried out individually for each chromatic component. If the criterion of dispersion of the obtained orientation values is high, this chromatic component will lose relevance. A final processing integrates the extracted contours of the three chromatic components, generating the so-called integrated contours image