963 resultados para Adenosine A(1) receptor
Resumo:
Financial support: This research was supported by grants to MDS from the NCI (2R01CA105304), the Canadian Institutes of Health Research (MOP79308) and the US Army Medical Research and Materiel Command Prostate Cancer Research Program (E81XWH-11-1-0551). Research by IJM’s group was supported by the Chief Scientist’s Office of the Scottish Government (ETM-258 and -382). We are grateful to Country Meadows Senior Men’s Golf Charity Classic for financial support of this research.
Resumo:
We thank European Commission (project “PET BRAIN: Mapping the brain with PET radiolabeled cannabinoid CB1 ligands”; FP7-People-2009-IAPP; Grant Agreement N.25142).
Resumo:
Funding ABK was funded by a studentship from the University of Aberdeen, Institute of Medical Sciences, and the Overseas Research Students Awards Scheme Acknowledgments We are grateful to Dr J.S. Gregory for assistance with Image J and Mr K. Mackenzie for assistance with Micro-CT analysis.
Resumo:
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Excitation-contraction coupling is an essential part of skeletal muscle contraction. It encompasses the sensing of depolarisation of the plasma membrane coupled with the release of Ca2+ from intracellular stores. The channel responsible for this release is called the Ryanodine receptor (RyR), and forms a hub of interacting proteins which work in concert to regulate the release of Ca2+ through this channel. The aim of this work was to characterise possible novel interactions with a proline-rich region of the RyR1, to characterise a monoclonal antibody (mAb VF1c) raised against a junctional sarcoplasmic reticulum protein postulated to interact with RyR1, and to characterise the protein recognised by this antibody in models of skeletal muscle disease such as Duchenne Muscular dystrophy (DMD) and sarcopenia. These experiments were performed using cell culture, protein purification via immunoprecipitation, affinity purification, low pressure chromatography and western blotting techniques. It was found that the RyR1 complex isolated from rat skeletal muscle co-purifies with the Growth factor receptor bound protein 2 (GRB2), very possibly via an interaction between the proline rich region of RyR1 and one of the SH3 domains located on the GRB2 protein. It was also found that Pleiotrophin and Phospholipase Cγ1, suggested interactors of the proline rich region of RyR1, did not co-purify with the RyR1 complex. Characterisation of mAb VF1c determined that this monoclonal antibody interacts with junctophilin 1, and binds to this protein between the region of 369-460, as determined by western blotting of JPH1 fragments expressed in yeast. It was also found that JPH1 and JPH2 are differentially regulated in different muscles of rabbit, where the highest amount of both proteins was found in the extensor digitorum longus (EDL) muscle. JPH1 and 2 levels were also examined in three rodent models of disease: the mdx mouse (a model of DMD), chronic intermittent hypoxia (CIH)-treated rat, and aged and adult mice, a model of sarcopenia. In the EDL and soleus muscle of CIH treated rats, no difference in either JPH1 or JPH2 abundance was detected in either muscle. An examination of JPH1 and 2 expression in mdx and wild type controls diaphragm, vastus lateralis, soleus and gastrocnemius muscle found no major differences in JPH1 abundance, while JPH2 was decreased in mdx gastrocnemius compared to wild type. In a mouse model of sarcopenia, JPH1 abundance was found to be increased in aged soleus but not in aged quadriceps, while in exercised quadriceps, JPH2 abundance was decreased compared to unexercised controls. Taken together, these results have implications for the regulation of RyR1 and JPH1 and 2 in skeletal muscle in both physiological and pathological states, and provide a newly characterised antibody to expand the field of JPH1 research.
Resumo:
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Genetic heterogeneity, lifestyle factors, gene-gene or gene-environment interactions are the determinants of T2D which puts Hispanics and populations with African ancestry at higher risk of developing T2D. In this dissertation, the genetic associations of PPARGC1A polymorphisms with T2D and its related phenotypes (metabolic markers) in Haitian Americans (cases=110, controls=116), African Americans (cases=120, controls=124) and Cuban Americans (cases=160, controls=181) of South Florida were explored. Five single nucleotide polymorphisms of gene PPARGC1A were evaluated in each ethnicity for their disease association. In Haitian Americans, rs7656250 (OR= 0.22, pp=0.03) had significant protective association with T2D but had risk association in African Americans for rs7656250 (OR=1.02, p=0.96) and rs4235308 (OR=2.53, p=0.03). We found that in Haitian American females, both rs7656250 (OR=0.23, pp=0.03) had protective association with T2D. In African American females, rs7656250 (OR=1.14, p=0.78) had risk association whereas in males, it had significant protective effect (OR=0.37, p=0.04). However, the risk association exhibited by rs4235308 was stronger in African American females (OR=2.69, p=0.03) than males (OR=1.16, p=0.72). In Cuban Americans, only rs7656250 showed significant risk association with T2D (OR=6.87, p=0.02) which was stronger in females alone (OR=7.67, p=0.01). We also observed significant differences among correlations of PPARGC1A SNPs and T2D phenotypes. Positive correlation was observed for log Hs-CRP with rs3774907 (pp=0.03) in Cuban Americans respectively. Correlation of log A1C with rs7656250 (p=0.02) was positive in Cuban Americans while it was negative for rs3774907 in Haitian Americans (ppPPARGC1A correlations with T2D and its phenotypes among the three ethnicities studied (ii) the associations of PPARGC1A SNPs showed significant effect modification by sex. The findings suggest that variations in effects of PPARGC1A gene polymorphisms among three ethnicities and between sexes may have biomedical implications for the development of T2D as well as the phenotypes related to T2D.
Resumo:
Free fatty acid receptor 1 (FFA1), previously known as GPR40 is a G protein-coupled receptor and a new target for treatment of type 2 diabetes. Two series of FFA1 agonists utilizing a 1,3,4-thiadiazole-2-caboxamide scaffold were synthetized. Both series offered significant improvement of the potency compared to the previously described 1,3,4-thiadiazole-based FFA1 agonists and high selectivity for FFA1. Molecular docking predicts new aromatic interactions with the receptor that improve agonist potency. The most potent compounds from both series were profiled for in vitro ADME properties (plasma and metabolic stability, LogD, plasma protein binding, hERG binding and CYP inhibition). One series suffered very rapid degradation in plasma and in presence of mouse liver microsomes. However, the other series delivered a lead compound that displayed a reasonable ADME profile together with the improved FFA1 potency.
Resumo:
The free fatty acid receptor 1 (FFA1), a G protein-coupled receptor (GPCR) naturally activated by long-chain fatty acids is a novel target for the treatment of metabolic diseases. The basic amine spirocyclic periphery of Eli Lilly's drug candidate LY2881835 for treatment of type 2 diabetes mellitus (which reached phase I clinical trials) inspired a series of novel FFA1 agonists. These were designed to incorporate the 3-[4-(benzyloxy)phenyl]propanoic acid pharmacophore core decorated with a range of spirocyclic motifs. The latter were prepared via the Prins cyclization and subsequent modification of the 4-hydroxytetrahydropyran moiety in the Prins product. Here, we synthesize 19 compounds and test for FFA1 activity. Within this pilot set, a nanomolar potency (EC50=55nM) was reached. Four lead compounds (EC50 range 55-410nM) were characterized for aqueous solubility, metabolic stability, plasma protein binding and Caco-2 permeability. While some instability in the presence of mouse liver microsomes was noted, mouse pharmacokinetic profile of the compound having the best overall ADME properties was evaluated to reveal acceptable bioavailability (F=10.3%) and plasma levels achieved on oral administration.
Resumo:
Galanin and Galanin (1-15) [GAL(1-15)] are implicated in anxiety- and depression related behaviors. Moreover, Galanin modulates 5-HT1A receptor (5-HT1AR) function at autorreceptor and postsynaptic level in the brain. In this study, we have analysed the ability of GAL(1-15) to modulate the effects of the 8-OH-DPAT agonist in the Forced Swimming Test (FST). Groups of rats were assessed in the FST. In the first set of experiments, to evaluate the interactions of 8-OH-DPAT and GAL(1-15), rats received subcutaneously (s.c) the effective doses of 8-OH-DPAT (0.25mg/Kg) 60min before the test and intracerebroventricularly (icv) GAL(1-15)1nmol 15min before the tests alone or in combination. In the second set of experiments, groups of rats received s.c. 8-OH-DPAT (0.125mg/Kg), icv GAL(1-15) 1nmol and icv the GALR2 antagonist M871 3 nmol alone or in combination. The locomotor activity was analysed in the open field test. GAL(1-15) 1nmol enhanced the antidepressant-like effects mediated by the effective dose of the 8-OH-DPAT. GAL(1-15) significantly decreased the immobility (p<0.05) and climbing (p<0.05) and increased the swimming (p<0.01) behaviour induced by an effective dose of 8-OH-DPAT (0.25mg/Kg) in FST. Moreover, after coadministration of GAL(1-15) and threshold dose of 8-OH-DPAT (0.125mg/Kg) a significant decreased appeared in immobility (p<0.01) and climbing (p<0.01) and increased the swimming behavior (p<0.001) vs 8-OH-DPAT group. Moreover, M871 blocked completely this interaction. These results indicate that GAL(1-15) enhances the antidepressant effects induced by 8-OH-DPAT in the FST. These findings may give the basis for the development of novel therapeutic drugs. This study was supported by Junta de Andalucía CVI6476.
Resumo:
We have described that Galanin N-terminal fragment (1-15) [GAL(1-15)] is associated with depressive effects and also modulates the antidepressant effects induced by the 5-HT1A receptor (5-HT1AR) agonist 8-OH-DPAT. The aim of this study is to analyze the ability of GAL(1-15) to modulate 5-HT1AR at the autoreceptor and postsynaptic receptor level in rats by using quantitative autoradiography. We analyzed the effect of intracerebroventricular GAL(1-15)-3nmol (n=6) or aCSF (n=6), 10 minutes, 2 and 5 hours after the injection, on the binding characteristics of the 5-HT1AR agonist [H3]-8-OH-DPAT in sections of the Dorsal Raphe (DR) and Dorsal Hippocampus, specifically CA1 and Dentate Gyrus (DG). Student’s t-test was used to compare the experimental groups. GAL(1-15) produced a time-dependent effect on the binding of [H3]-8-OH-DPAT. In CA1 and DG, a significant increase in the KD and Bmax was observed, by 90%(p<0.05), at 10 minutes and 2 hours after injection. However, 5 hours after GAL(1-15) the only significant change remaining was the increase in Bmax at the DG. The coinjection of the GALR2 antagonist M871 blocked significantly the effects induced by GAL(1-15) in both areas. In DR, 2 hours after injection GAL(1-15) only produced a decrease in the Bmax by 20%(p<0.05). These results indicate that GAL(1-15) interacts with 5-HT1AR at the receptor level in DR and Dorsal Hippocampus. Therapeutic strategies based on these results could be developed for the treatment of depression disorders. This work has been supported by Junta de Andalucia CVI646 and Spanish Ministry of Economy PSI2013-44901-P.
Resumo:
This study aimed at evaluating the functional activation and activating receptors expression on resting, short- and long-term NK and NK-like T cells from blood of ovarian neoplasia patients. Blood from patients with adnexal benign alterations (n = 10) and ovarian cancer (grade I-IV n = 14) were collected after signed consent. Effector cells activation was evaluated by the expression of the CD107a molecule. Short-term culture was conducted overnight with IL-2 and long-term culture for 21 days, by a method designed to expand CD56(+) lymphocytes. Short-term culture significantly increased NK cells activation compared to resting NK cells (p<0.05), however, the long-term procedure supported an even higher increase (p<0.001). Resting NK-like T cells showed poor activation, which was not altered by the culture procedures. The long-term culture effectively increased the expression of the activating receptors on NK and NK-like T cells, either by increasing the number of cells expressing a given receptor and/or by up-regulating their expression intensity. As a conclusion, the long-term culture system employed, resulted in a high number of functional NK cells. The culture system was particularly efficient on the up-regulation of NKp30 and DNAM-1 receptors on NK cells.
Resumo:
Hereditary angioedema (HAE) with C1 inhibitor deficiency manifests as recurrent episodes of edema involving the skin, upper respiratory tract and gastrointestinal tract. It can be lethal due to asphyxia. The aim here was to evaluate the response to therapy for these attacks using icatibant, an inhibitor of the bradykinin receptor, which was recently introduced into Brazil. Prospective experimental single-cohort study on the efficacy and safety of icatibant for HAE patients. Patients with a confirmed HAE diagnosis were enrolled according to symptoms and regardless of the time since onset of the attack. Icatibant was administered in accordance with the protocol that has been approved in Brazil. Symptom severity was assessed continuously and adverse events were monitored. 24 attacks in 20 HAE patients were treated (female/male 19:1; 19-55 years; median 29 years of age). The symptoms were: subcutaneous edema (22/24); abdominal pain (15/24) and upper airway obstruction (10/24). The time taken until onset of relief was: 5-10 minutes (5/24; 20.8%); 10-20 (5/24; 20.8%); 20-30 (8/24; 33.4%); 30-60 (5/24; 20.8%); and 2 hours (1/24; 4.3%). The time taken for complete resolution of symptoms ranged from 4.3 to 33.4 hours. Adverse effects were only reported at injection sites. Mild to moderate erythema and/or feelings of burning were reported by 15/24 patients, itching by 3 and no adverse effects in 6. HAE type I patients who received icatibant responded promptly; most achieved improved symptom severity within 30 minutes. Local adverse events occurred in 75% of the patients.
Resumo:
Retinal pigment epithelium cells, along with tight junction (TJ) proteins, constitute the outer blood retinal barrier (BRB). Contradictory findings suggest a role for the outer BRB in the pathogenesis of diabetic retinopathy (DR). The aim of this study was to investigate whether the mechanisms involved in these alterations are sensitive to nitrosative stress, and if cocoa or epicatechin (EC) protects from this damage under diabetic (DM) milieu conditions. Cells of a human RPE line (ARPE-19) were exposed to high-glucose (HG) conditions for 24 hours in the presence or absence of cocoa powder containing 0.5% or 60.5% polyphenol (low-polyphenol cocoa [LPC] and high-polyphenol cocoa [HPC], respectively). Exposure to HG decreased claudin-1 and occludin TJ expressions and increased extracellular matrix accumulation (ECM), whereas levels of TNF-α and inducible nitric oxide synthase (iNOS) were upregulated, accompanied by increased nitric oxide levels. This nitrosative stress resulted in S-nitrosylation of caveolin-1 (CAV-1), which in turn increased CAV-1 traffic and its interactions with claudin-1 and occludin. This cascade was inhibited by treatment with HPC or EC through δ-opioid receptor (DOR) binding and stimulation, thereby decreasing TNF-α-induced iNOS upregulation and CAV-1 endocytosis. The TJ functions were restored, leading to prevention of paracellular permeability, restoration of resistance of the ARPE-19 monolayer, and decreased ECM accumulation. The detrimental effects on TJs in ARPE-19 cells exposed to DM milieu occur through a CAV-1 S-nitrosylation-dependent endocytosis mechanism. High-polyphenol cocoa or EC exerts protective effects through DOR stimulation.
Resumo:
The objective of the study was to illustrate the applicability and significance of the novel Lewis urothelial cancer model compared to the classic Fisher 344. Fischer 344 and Lewis females rats, 7 weeks old, were intravesical instilled N-methyl-N-nitrosourea 1.5 mg/kg every other week for a total of four doses. After 15 weeks, animals were sacrificed and bladders analyzed: histopathology (tumor grade and stage), immunohistochemistry (apoptotic and proliferative indices) and blotting (Toll-like receptor 2-TLR2, Uroplakin III-UP III and C-Myc). Control groups received placebo. There were macroscopic neoplastic lesions in 20 % of Lewis strain and 70 % of Fischer 344 strain. Lewis showed hyperplasia in 50 % of animals, normal bladders in 50 %. All Fischer 344 had lesions, 20 % papillary hyperplasia, 30 % dysplasia, 40 % neoplasia and 10 % squamous metaplasia. Proliferative and apoptotic indices were significantly lower in the Lewis strain (p < 0.01). The TLR2 and UP III protein levels were significantly higher in Lewis compared to Fischer 344 strain (70.8 and 46.5 % vs. 49.5 and 16.9 %, respectively). In contrast, C-Myc protein levels were significantly higher in Fischer 344 (22.5 %) compared to Lewis strain (13.7 %). The innovative Lewis carcinogen resistance urothelial model represents a new strategy for translational research. Preservation of TLR2 and UP III defense mechanisms might drive diverse urothelial phenotypes during carcinogenesis in differently susceptible individuals.