999 resultados para 1063
Resumo:
Jenkins, Tudor; Brieva, A.C.; Jones, D.G.; Evans, D.A., (2006) 'Internal structure of copper(II)-phthalocyanine thin films on SiO2/Si substrates investigated by grazing incidence x-ray reflectometry', Journal of Applied Physics 99 pp.73504 RAE2008
Resumo:
Mark Pagel, Andrew Meade (2004). A phylogenetic mixture model for detecting pattern-heterogeneity in gene sequence or character-state data. Systematic Biology, 53(4), 571-581. RAE2008
Resumo:
The following article appeared in Torres, V., Beruete, M., Del Villar, I., & Sánchez, P. (2016). Indium tin oxide refractometer in the visible and near infrared via lossy mode and surface plasmon resonances with Kretschmann configuration. Applied Physics Letters, 108(4), doi:10.1063/1.4941077, and may be found at http://dx.doi.org/10.1063/1.4941077.
Resumo:
Boston University Theology Library
Resumo:
We present results of calculations [1] that employ a new mixed quantum classical iterative density matrix propagation approach (ILDM , or so called Is‐Landmap) [2] to explore the survival of coherence in different photo synthetic models. Our model studies confirm the long lived quantum coherence , while conventional theoretical tools (such as Redfield equation) fail to describe these phenomenon [3,4]. Our ILDM method is a numerical exactly propagation scheme and can be served as a bench mark calculation tools[2]. Result get from ILDM and from other recent methods have been compared and show agreement with each other[4,5]. Long lived coherence plateau has been attribute to the shift of harmonic potential due to the system bath interaction, and the harvesting efficiency is a balance between the coherence and dissipation[1]. We use this approach to investigate the excitation energy transfer dynamics in various light harvesting complex include Fenna‐Matthews‐Olsen light harvesting complex[1] and Cryptophyte Phycocyanin 645 [6]. [1] P.Huo and D.F.Coker ,J. Chem. Phys. 133, 184108 (2010) . [2] E.R. Dunkel, S. Bonella, and D.F. Coker, J. Chem. Phys. 129, 114106 (2008). [3] A. Ishizaki and G.R. Fleming, J. Chem. Phys. 130, 234111 (2009). [4] A. Ishizaki and G.R. Fleming, Proc. Natl. Acad. Sci. 106, 17255 (2009). [5] G. Tao and W.H. Miller, J. Phys. Chem. Lett. 1, 891 (2010). [6] P.Huo and D.F.Coker in preparation
Resumo:
This article examines some preliminary tests which were performed in order to evaluate the best electrode configuration (width and spacing) for cell culture analyses. Biochips packaged with indium tin oxide (ITO) interdigitated electrodes (IDEs) were used to perform impedance measurements on A549 cells cultured on the surface of the biochip. Several tests were carried out using a 10 mM solution of Sodium Chloride (NaCl), cell medium and the cell culture itself to characterize some of the configurations already fabricated in the facilities at Tyndall National Institute.
Resumo:
We propose and experimentally validate a first-principles based model for the nonlinear piezoelectric response of an electroelastic energy harvester. The analysis herein highlights the importance of modeling inherent piezoelectric nonlinearities that are not limited to higher order elastic effects but also include nonlinear coupling to a power harvesting circuit. Furthermore, a nonlinear damping mechanism is shown to accurately restrict the amplitude and bandwidth of the frequency response. The linear piezoelectric modeling framework widely accepted for theoretical investigations is demonstrated to be a weak presumption for near-resonant excitation amplitudes as low as 0.5 g in a prefabricated bimorph whose oscillation amplitudes remain geometrically linear for the full range of experimental tests performed (never exceeding 0.25% of the cantilever overhang length). Nonlinear coefficients are identified via a nonlinear least-squares optimization algorithm that utilizes an approximate analytic solution obtained by the method of harmonic balance. For lead zirconate titanate (PZT-5H), we obtained a fourth order elastic tensor component of c1111p =-3.6673× 1017 N/m2 and a fourth order electroelastic tensor value of e3111 =1.7212× 108 m/V. © 2010 American Institute of Physics.
Resumo:
We demonstrate a scalable approach to addressing multiple atomic qubits for use in quantum information processing. Individually trapped 87Rb atoms in a linear array are selectively manipulated with a single laser guided by a microelectromechanical beam steering system. Single qubit oscillations are shown on multiple sites at frequencies of ≃3.5 MHz with negligible crosstalk to neighboring sites. Switching times between the central atom and its closest neighbor were measured to be 6-7 μs while moving between the central atom and an atom two trap sites away took 10-14 μs. © 2010 American Institute of Physics.
Resumo:
It is known that the exact density functional must give ground-state energies that are piecewise linear as a function of electron number. In this work we prove that this is also true for the lowest-energy excited states of different spin or spatial symmetry. This has three important consequences for chemical applications: the ground state of a molecule must correspond to the state with the maximum highest-occupied-molecular-orbital energy, minimum lowest-unoccupied-molecular-orbital energy, and maximum chemical hardness. The beryllium, carbon, and vanadium atoms, as well as the CH(2) and C(3)H(3) molecules are considered as illustrative examples. Our result also directly and rigorously connects the ionization potential and electron affinity to the stability of spin states.
Resumo:
The dynamic interaction between laser-generated tandem bubble and individual polystyrene particles of 2 and 10 μm in diameter is studied in a microfluidic channel (25 μm height) by high-speed imaging and particle image velocimetry. The asymmetric collapse of the tandem bubble produces a pair of microjets and associated long-lasting vortices that can propel a single particle to a maximum velocity of 1.4 m∕s in 30 μs after the bubble collapse with a resultant directional displacement up to 60 μm in 150 μs. This method may be useful for high-throughput cell sorting in microfluidic devices.
Resumo:
The idealized system of an atomically flat metallic surface [highly oriented pyrolytic graphite (HOPG)] and an organic monolayer (porphyrin) was used to determine whether the dielectric function and associated properties of thin films can be accessed with scanning-near-field scanning optical microscopy (s-NSOM). Here, we demonstrate the use of harmonics up to fourth order and the polarization dependence of incident light to probe dielectric properties on idealized samples of monolayers of organic molecules on atomically smooth substrates. An analytical treatment of light/sample interaction using the s-NSOM tip was developed in order to quantify the dielectric properties. The theoretical analysis and numerical modeling, as well as experimental data, demonstrate that higher order harmonic scattering can be used to extract the dielectric properties of materials with tens of nanometer spatial resolution. To date, the third harmonic provides the best lateral resolution (∼50 nm) and dielectric constant contrast for a porphyrin film on HOPG. © 2009 American Institute of Physics.
Resumo:
A recent quantum computing paper (G. S. Uhrig, Phys. Rev. Lett. 98, 100504 (2007)) analytically derived optimal pulse spacings for a multiple spin echo sequence designed to remove decoherence in a two-level system coupled to a bath. The spacings in what has been called a "Uhrig dynamic decoupling (UDD) sequence" differ dramatically from the conventional, equal pulse spacing of a Carr-Purcell-Meiboom-Gill (CPMG) multiple spin echo sequence. The UDD sequence was derived for a model that is unrelated to magnetic resonance, but was recently shown theoretically to be more general. Here we show that the UDD sequence has theoretical advantages for magnetic resonance imaging of structured materials such as tissue, where diffusion in compartmentalized and microstructured environments leads to fluctuating fields on a range of different time scales. We also show experimentally, both in excised tissue and in a live mouse tumor model, that optimal UDD sequences produce different T(2)-weighted contrast than do CPMG sequences with the same number of pulses and total delay, with substantial enhancements in most regions. This permits improved characterization of low-frequency spectral density functions in a wide range of applications.
A mathematical theory of stochastic microlensing. II. Random images, shear, and the Kac-Rice formula
Resumo:
Continuing our development of a mathematical theory of stochastic microlensing, we study the random shear and expected number of random lensed images of different types. In particular, we characterize the first three leading terms in the asymptotic expression of the joint probability density function (pdf) of the random shear tensor due to point masses in the limit of an infinite number of stars. Up to this order, the pdf depends on the magnitude of the shear tensor, the optical depth, and the mean number of stars through a combination of radial position and the star's mass. As a consequence, the pdf's of the shear components are seen to converge, in the limit of an infinite number of stars, to shifted Cauchy distributions, which shows that the shear components have heavy tails in that limit. The asymptotic pdf of the shear magnitude in the limit of an infinite number of stars is also presented. All the results on the random microlensing shear are given for a general point in the lens plane. Extending to the general random distributions (not necessarily uniform) of the lenses, we employ the Kac-Rice formula and Morse theory to deduce general formulas for the expected total number of images and the expected number of saddle images. We further generalize these results by considering random sources defined on a countable compact covering of the light source plane. This is done to introduce the notion of global expected number of positive parity images due to a general lensing map. Applying the result to microlensing, we calculate the asymptotic global expected number of minimum images in the limit of an infinite number of stars, where the stars are uniformly distributed. This global expectation is bounded, while the global expected number of images and the global expected number of saddle images diverge as the order of the number of stars. © 2009 American Institute of Physics.
Resumo:
We systematically investigated the surface plasmon resonance in one-dimensional (1D) subwavelength nanostructured metal films under the Kretschmann configuration. We calculated the reflectance, transmittance, and absorption for varying the dielectric fill factor, the period of the 1D nanostructure, and the metal film thickness. We have found that the small dielectric slits in the metal films reduce the surface plasmon resonance angle and move it toward the critical angle for total internal reflection. The reduction in surface plasmon resonance angle in nanostructured metal films is due to the increased intrinsic free electron oscillation frequency in metal nanostructures. Also we have found that the increasing the spatial frequency of the 1D nanograting reduces the surface plasmon resonance angle, which indicates that less momentum is needed to match the momentum of the surface plasmon-polariton. The variation in the nanostructured metal film thickness changes the resonance angle slightly, but mainly remains as a mean to adjust the coupling between the incident optical wave and the surface plasmon-polariton wave. © 2009 American Institute of Physics.
Resumo:
When solid material is removed in order to create flow channels in a load carrying structure, the strength of the structure decreases. On the other hand, a structure with channels is lighter and easier to transport as part of a vehicle. Here, we show that this trade off can be used for benefit, to design a vascular mechanical structure. When the total amount of solid is fixed and the sizes, shapes, and positions of the channels can vary, it is possible to morph the flow architecture such that it endows the mechanical structure with maximum strength. The result is a multifunctional structure that offers not only mechanical strength but also new capabilities necessary for volumetric functionalities such as self-healing and self-cooling. We illustrate the generation of such designs for strength and fluid flow for several classes of vasculatures: parallel channels, trees with one, two, and three bifurcation levels. The flow regime in every channel is laminar and fully developed. In each case, we found that it is possible to select not only the channel dimensions but also their positions such that the entire structure offers more strength and less flow resistance when the total volume (or weight) and the total channel volume are fixed. We show that the minimized peak stress is smaller when the channel volume (φ) is smaller and the vasculature is more complex, i.e., with more levels of bifurcation. Diminishing returns are reached in both directions, decreasing φ and increasing complexity. For example, when φ=0.02 the minimized peak stress of a design with one bifurcation level is only 0.2% greater than the peak stress in the optimized vascular design with two levels of bifurcation. © 2010 American Institute of Physics.