982 resultados para stelle neutroni fisica nucleare


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work we deposit via non-reactive magnetron sputtering of radio-frequency nanofilmes of nitreto of aluminum(AlN). The nanofilms aluminum nitride are semiconductors materials with high thermal conductivity, high melting point, piezoelectricity and wide band gap (6, 2 eV) with hexagonal wurtzite crystal structure, belonging to the group of new materials called III-V nitrides in which together with the gallium nitride and indium nitride have attracted much interest because they have physical and chemical properties relevant to new technological applications, mainly in microelectronic and optoelectronic devices. Three groups were deposited with thicknesses nanofilms time dependent on two substrates (glass and silicon) at a temperature of 25 ° C. The nanofilms AlN were characterized using three techniques, X-ray diffraction, Raman spectroscopy and atomic force microscopy (AFM), examined the morphology of these. Through the analysis of X-rays get the thickness of each sample with its corresponding deposition rate. The analysis of X-rays also revealed that nanofilms are not crystalline, showing the amorphous character of the samples. The results obtained by the technique, atomic force microscopy (AFM) agree with those obtained using the technique of X-rays. Characterization by Raman spectroscopy revealed the existence of active modes characteristic of AlN in the samples

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A rotação estelar é um dos mais importantes observáveis da evolução estelar. Neste sentido, o satélite CoRoT representa uma oportunidade única de medir os períodos rotacionais para uma amostra de estrelas estatisticamente robusta, oferecendo dados absolutamente necessários para o estudo da rotação e seu papel na evolução estelar. Para conseguir isto, um passo fundamental é a caracterização física e química das estrelas observadas pelo CoRoT, especificamente devido ao fato de que o cálculo de períodos rotacionais confiáveis é um trabalho difícil sem a ajuda dos parâmetros estelares. Desta forma, foi elaborado um importante seguimento observacional das estrelas nos campos do CoRoT do anticentro LRa01 e do centro LRc01, permitindo a correta identificação dos períodos que reflitam a modulação rotacional. Nesta tese de doutorado são apresentados os resultados de tal seguimento. Parâmetros físicos e químicos, tais como temperatura efetiva Teff , gravidade superficial log(g), velocidade de microturbulência Vmic, abundância de ferro [Fe/H], velocidade de rotação projetada Vsin(i), e abundância de lítio A(Li) são apresentados para uma amostra de 116 estrelas dos campos CoRoT. Elas se encontram em diferentes estágios evolutivos, desde a sequência principal (SP) até o ramo das gigantes vermelhas (GV). As observações foram feitas utilizando os espectrógrafos UVES (VLT) e HYDRA (CTIO). Para a derivação de tais parâmetros foram utilizados o programa TurboSpectrum e os modelos de atmosfera de MARCS. Paralelamente, velocidades rotacionais Vsin(i) foram obtidas a partir do ajuste dos perfis observados e sintéticos das linhas de ferro e por meio de uma calibração de função de correlação cruzada (CCF). Períodos rotacionais Prot para 77 estrelas da amostra foram obtidos a partir das curvas de luz do satélite CoRoT. Extensas tabelas destes parâmetros e seus respectivos erros são apresentadas. Foram encontradas diferenças nas distribuições de Teff , [Fe/H] e estágios evolutivos entre os diferentes campos do CoRoT, indicando possíveis efeitos de seleção na amostra, assim como a existência de diferentes populações estelares do disco Galáctico. Por outro lado, o comportamento rotacional e as abundâncias de lítio não apresentam diferenças entre estrelas de parâmetros físicos similares, mas que pertencem a diferentes campos do CoRoT. A partir da análise de temperaturas, foi encontrada uma maior extinção por avermelhamento para estrelas do CoRoT localizadas no campo LRc01, assim como um gradiente deste valor em função da distância. Os resultados mostram que as abundâncias de lítio, as velocidades de rotação e os períodos rotacionais apresentam o mesmo comportamento descrito na literatura. Por outro lado, é apresentada pela primeira vez a relação que existe entre o lítio e o período de rotação em diferentes estágios evolutivos, mostrando, tal como era esperado, que ambas as grandezas possuem uma anticorrelação. Também é apresentada a evolução simultânea da rotação e do lítio, e foram calculadas relações que permitem obter valores médios de A(Li) como função da temperatura efetiva e do período rotacional. Os dados apresentados nesta tese de doutorado representam um importante ponto de partida para serem utilizados como uma amostra de calibração para diferentes programas no contexto da missão do satélite CoRoT, uma vez que a lista de estrelas aqui analisadas são parte das mais brilhantes que compõem o campo Exo do CoRoT

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We use a finite diference eulerian numerical code, called ZEUS 3D, to do simulations involving the collision between two magnetized molecular clouds, aiming to evaluate the rate of star formation triggered by the collision and to analyse how that rate varies depending on the relative orientations between the cloud magnetic fields before the shock. The ZEUS 3D code is not an easy code to handle. We had to create two subroutines, one to study the cloud-cloud collision and the other for the data output. ZEUS is a modular code. Its hierarchical way of working is explained as well as the way our subroutines work. We adopt two sets of different initial values for density, temperature and magnetic field of the clouds and of the external medium in order to study the collision between two molecular clouds. For each set, we analyse in detail six cases with different directions and orientations of the cloud magnetic field relative to direction of motion of the clouds. The analysis of these twelve cases allowed us to conform analytical-theoretical proposals found in the literature, and to obtain several original results. Previous works indicate that, if the cloud magnetic fields before the collision are orthogonal to the direction of motion, then a strong inhibition of star formation will occur during a cloud-cloud shock, whereas if those magnetic fields are parallel to the direction of motion, star formation will be stimulated. Our treatment of the problem confirmed numerically those results, and further allowed us to quantify the relative star forming efficiencies in each case. Moreover, we propose and analyse an intermediate case where the field of one of the clouds is orthogonal to the motion and the field of the other one is parallel to the motion. We conclude that, in this case, the rate at which the star formation occurs has a value also intermediate between the two extreme cases we mentioned above. Besides that we study the case in which the fields are orthogonal to the direction of the motion but, instead of being parallel to each other, they are anti-parallel, and we obtained for this case the corresponding variation of the star formation rate due to this alteration of the field configuration. This last case has not been studied in the literature before. Our study allows us to obtain, from the simulations, the rate of star formation in each case, as well as the temporal dependence of that rate as each collision evolves, what we do in detail for one of the cases in particular. The values we obtain for the rate of star formation are in accordance with those expected from the presently existing observational data

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a study of nanostructured magnetic multilayer systems in order to syn- thesize and analyze the properties of periodic and quasiperiodic structures. This work evolved from the deployment and improvement of the sputtering technique in our labora- tories, through development of a methodology to synthesize single crystal ultrathin Fe (100) films, to the final goal of growing periodic and quasiperiodic Fe/Cr multilayers and investi- gating bilinear and biquadratic exchange coupling between ferromagnetic layer dependence for each generation. Initially we systematically studied the related effects between deposition parameters and the magnetic properties of ultrathin Fe films, grown by DC magnetron sput- tering on MgO(100) substrates. We modified deposition temperature and film thickness, in order to improve production and reproduction of nanostructured monocrystalline Fe films. For this set of samples we measured MOKE, FMR, AFM and XPS, with the aim of investi- gating their magnocrystalline and structural properties. From the magnetic viewpoint, the MOKE and FMR results showed an increase in magnetocrystalline anisotropy due to in- creased temperature. AFM measurements provided information about thickness and surface roughness, whereas XPS results were used to analyze film purity. The best set of parame- ters was used in the next stage: investigation of the structural effect on magnetic multilayer properties. In this stage multilayers composed of interspersed Fe and Cr films are deposited, following the Fibonacci periodic and quasiperiodic growth sequence on MgO (100) substrates. The behavior of MOKE and FMR curves exhibit bilinear and biquadratic exchange coupling between the ferromagnetic layers. By computationally adjusting magnetization curves, it was possible to determine the nature and intensity of the interaction between adjacent Fe layers. After finding the global minimum of magnetic energy, we used the equilibrium an- gles to obtain magnetization and magnetoresistance curves. The results observed over the course of this study demonstrate the efficiency and versatility of the sputtering technique in the synthesis of ultrathin films and high-quality multilayers. This allows the deposition of magnetic nanostructures with well-defined magnetization and magnetoresistance parameters and possible technological applications

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present work we study the processes of heating in the high stellar atmosphere, with base in an analysis of behavior of the cromospheric and coronal emission for a sample of single stars classified as giant in the literature. The evolutionary status of the stars of the sample was determined from HIPPARCOS satellite trigonometric parallax measurements and from the Toulouse Genéve code. In this study we show the form of behavior of the CaII emission flux in spectral lines H and K F(CaII) and the X-ray emission flux in function of the rotation, number of Rossby Ro and depth in mass of the convective envelope. In this analysis we show that while the cromospheric activity is dominated clearly by a physical process of heating associated with the rotation, like a magnetic field produced by dynamo effect, the coronal activity seems to be influenced for a mechanism independent of the rotation. We show also that the effective role of the depth in massa of the convective envelope on the stellar activity has an important effect in the responsible physical process for the behavior of the activity in the atmosphere of the stars.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study will show the capability of the reactive/nonreactive sputtering (dc/rf) technique at low power for the growth of nanometric thin films from magnetic materials (FeN) and widegap semiconductors (AlN), as well as the technological application of the Peltier effect using commercial modules of bismuth telluride (Bi2Te3). Of great technological interest to the high-density magnetic recording industry, the FeN system represents one of the most important magnetic achievements; however, diversity of the phases formed makes it difficult to control its magnetic properties during production of devices. We investigated the variation in these properties using ferromagnetic resonance, MOKE and atomic force microscopy (AFM), as a function of nitrogen concentration in the reactive gas mixture. Aluminum nitride, a component of widegap semiconductors and of considerable interest to the electronic and optoelectronic industry, was grown on nanometric thin film for the first time, with good structural quality by non-reactive rf sputtering of a pure AlN target at low power (≈ 50W). Another finding in this study is that a long deposition time for this material may lead to film contamination by materials adsorbed into deposition chamber walls. Energy-dispersive X-ray (EDX) analysis shows that the presence of magnetic contaminants from previous depositions results in grown AlN semiconductor films exhibiting magnetoresistance with high resistivity. The Peltier effect applied to commercially available compact refrigeration cells, which are efficient for cooling small volumes, was used to manufacture a technologically innovative refrigerated mini wine cooler, for which a patent was duly registered

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Different studies point for an rotation age link following a α tα relationship. The value of the α -parameter has a strong role on the evolutionary behaviour of rotation, because it indicates how strong is the spindown once stars evolve. The well known Skumanich s relation α t −1/2, which is consistent with simple theories of angular momentum loss from rotating stars with magnetic fields and winds, is one of the best accepted. Nevertheless, several studies show clearly that such a relation cannot hold for stars much younger or much older than the Pleiades (100 Mega years) without leading to velocities much greater or much lower than those presently observed. The present study aims at improving this picture on the basis of an enlarged analyses taking into account the role of mass and metallicity on the rotation age relation, based on an unprecedented sample of about 14 000 stars in the solar neighbourhood. From this new approach we show that the α parameter it depends strongly on the stellar age and, by consequence, on the metallicity. In addition, one observes a strong dependence of the referred parameter on the single or binary status of the stars

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is presently a worldwide interest in artificial magnetic systems which guide research activities in universities and companies. Thin films and multilayers have a central role, revealing new magnetic phases which often lead to breakthroughs and new technology standards, never thought otherwise. Surface and confinement effects cause large impact in the magnetic phases of magnetic materials with bulk spatially periodic patterns. New magnetic phases are expected to form in thin film thicknesses comparable to the length of the intrinsic bulk magnetic unit cell. Helimagnetic materials are prototypes in this respect, since the bulk magnetic phases consist in periodic patterns with the length of the helical pitch. In this thesis we study the magnetic phases of thin rare-earth films, with surfaces oriented along the (002) direction. The thesis includes the investigation of the magnetic phases of thin Dy and Ho films, as well as the thermal hysteresis cycles of Dy thin films. The investigation of the thermal hysteresis cycles of thin Dy films has been done in collaboration with the Laboratory of Magnetic Materials of the University of Texas, at Arlington. The theoretical modeling is based on a self-consistent theory developed by the Group of Magnetism of UFRN. Contributions from the first and second neighbors exchange energy, from the anisotropy energy and the Zeeman energy are calculated in a set of nonequivalent magnetic ions, and the equilibrium magnetic phases, from the Curie temperature up to the Nèel temperature, are determined in a self-consistent manner, resulting in a vanishing torque in the magnetic ions at all planes across the thin film. Our results reproduce the known isothermal and iso-field curves of bulk Dy and Ho, and the known spin-slip phases of Ho, and indicate that: (i) the confinement in thin films leads to a new magnetic phase, with alternate helicity, which leads to the measured thermal hysteresis of Dy ultrathin films, with thicknesses ranging from 4 nm to 16 nm; (ii) thin Dy films have anisotropy dominated surface lock-in phases, with alignment of surface spins along the anisotropy easy axis directions, similar to the known spin-slip phases of Ho ( which form in the bulk and are commensurate to the crystal lattice); and (iii) the confinement in thin films change considerably the spin-slip patterns of Ho.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the Einstein s theory of General Relativity the field equations relate the geometry of space-time with the content of matter and energy, sources of the gravitational field. This content is described by a second order tensor, known as energy-momentum tensor. On the other hand, the energy-momentum tensors that have physical meaning are not specified by this theory. In the 700s, Hawking and Ellis set a couple of conditions, considered feasible from a physical point of view, in order to limit the arbitrariness of these tensors. These conditions, which became known as Hawking-Ellis energy conditions, play important roles in the gravitation scenario. They are widely used as powerful tools for analysis; from the demonstration of important theorems concerning to the behavior of gravitational fields and geometries associated, the gravity quantum behavior, to the analysis of cosmological models. In this dissertation we present a rigorous deduction of the several energy conditions currently in vogue in the scientific literature, such as: the Null Energy Condition (NEC), Weak Energy Condition (WEC), the Strong Energy Condition (SEC), the Dominant Energy Condition (DEC) and Null Dominant Energy Condition (NDEC). Bearing in mind the most trivial applications in Cosmology and Gravitation, the deductions were initially made for an energy-momentum tensor of a generalized perfect fluid and then extended to scalar fields with minimal and non-minimal coupling to the gravitational field. We also present a study about the possible violations of some of these energy conditions. Aiming the study of the single nature of some exact solutions of Einstein s General Relativity, in 1955 the Indian physicist Raychaudhuri derived an equation that is today considered fundamental to the study of the gravitational attraction of matter, which became known as the Raychaudhuri equation. This famous equation is fundamental for to understanding of gravitational attraction in Astrophysics and Cosmology and for the comprehension of the singularity theorems, such as, the Hawking and Penrose theorem about the singularity of the gravitational collapse. In this dissertation we derive the Raychaudhuri equation, the Frobenius theorem and the Focusing theorem for congruences time-like and null congruences of a pseudo-riemannian manifold. We discuss the geometric and physical meaning of this equation, its connections with the energy conditions, and some of its several aplications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work we investigate the effect of a BCS-type pairing term for free spinless fermions, with a propensity to form a condensate of pairs in a 1+1 dimension. Using the of bosonization technique we explore the possible condition of existence of quasiparticles in a superconducting state. Although there is no spontaneous breaking of chiral symmetry the propagator of one-particle fermion is massive and, in fact, resembles the one-particle Green s function of conventional quasiparticles

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work we study a connection between a non-Gaussian statistics, the Kaniadakis statistics, and Complex Networks. We show that the degree distribution P(k)of a scale free-network, can be calculated using a maximization of information entropy in the context of non-gaussian statistics. As an example, a numerical analysis based on the preferential attachment growth model is discussed, as well as a numerical behavior of the Kaniadakis and Tsallis degree distribution is compared. We also analyze the diffusive epidemic process (DEP) on a regular lattice one-dimensional. The model is composed of A (healthy) and B (sick) species that independently diffusive on lattice with diffusion rates DA and DB for which the probabilistic dynamical rule A + B → 2B and B → A. This model belongs to the category of non-equilibrium systems with an absorbing state and a phase transition between active an inactive states. We investigate the critical behavior of the DEP using an auto-adaptive algorithm to find critical points: the method of automatic searching for critical points (MASCP). We compare our results with the literature and we find that the MASCP successfully finds the critical exponents 1/ѵ and 1/zѵ in all the cases DA =DB, DA DB. The simulations show that the DEP has the same critical exponents as are expected from field-theoretical arguments. Moreover, we find that, contrary to a renormalization group prediction, the system does not show a discontinuous phase transition in the regime o DA >DB.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

On this study we have revisited the predicted tidal circularization theory in close binary systems with a evolved component. Close binaries suffer tidal interactions that tend to synchronize periods and circularize the orbits (Zahn 1977, 1989, 1992). According to Zahn s theory we compute the integral that give us the variation of the eccentricity in a binary under the influence of tidal force and we compare the integral results with new observations for 260 binary systems with orbital solutions. Our results confirm the success of the Zahn s theory with a new data and new stellar evolutionary models, on the other hand, our results points to the need for a better description of the role of convection on this theory

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work is part of an effort of consolidation of a daily search for powder technology at the Department of Physics of the Universidade Federal do Rio Grande do Norte. This work objective the study and development of new ceramic materials from raw materials abundant at the region. For this, were studied ceramic mixtures of powders from diatomite-titania to aiming at a new ceramic material from powder technology. The experimental work involved a characterization of ceramic powders from a diatomite-titania mixture. The powders obtained were pressed and then parameters like variation of mass, linear shrinkage, activation energy and the mechanism of sintering are studied in function of the time and temperature of sintering, beyond microstructural analysis. The obtained results allow us estimate the optimizing of sintering conditions of this material

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this thesis we investigate physical problems which present a high degree of complexity using tools and models of Statistical Mechanics. We give a special attention to systems with long-range interactions, such as one-dimensional long-range bondpercolation, complex networks without metric and vehicular traffic. The flux in linear chain (percolation) with bond between first neighbor only happens if pc = 1, but when we consider long-range interactions , the situation is completely different, i.e., the transitions between the percolating phase and non-percolating phase happens for pc < 1. This kind of transition happens even when the system is diluted ( dilution of sites ). Some of these effects are investigated in this work, for example, the extensivity of the system, the relation between critical properties and the dilution, etc. In particular we show that the dilution does not change the universality of the system. In another work, we analyze the implications of using a power law quality distribution for vertices in the growth dynamics of a network studied by Bianconi and Barabási. It incorporates in the preferential attachment the different ability (fitness) of the nodes to compete for links. Finally, we study the vehicular traffic on road networks when it is submitted to an increasing flux of cars. In this way, we develop two models which enable the analysis of the total flux on each road as well as the flux leaving the system and the behavior of the total number of congested roads

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A real space renormalization group method is used to investigate the criticality (phase diagrams, critical expoentes and universality classes) of Z(4) model in two and three dimensions. The values of the interaction parameters are chosen in such a way as to cover the complete phase diagrams of the model, which presents the following phases: (i) Paramagnetic (P); (ii) Ferromagnetic (F); (iii) Antiferromagnetic (AF); (iv) Intermediate Ferromagnetic (IF) and Intermediate Antiferromagnetic (IAF). In the hierarquical lattices, generated by renormalization the phase diagrams are exact. It is also possible to obtain approximated results for square and simple cubic lattices. In the bidimensional case a self-dual lattice is used and the resulting phase diagram reproduces all the exact results known for the square lattice. The Migdal-Kadanoff transformation is applied to the three dimensional case and the additional phases previously suggested by Ditzian et al, are not found