948 resultados para silane grafting
Resumo:
The last decades have witnessed significant and rapid progress in polymer chemistry and molecular biology. The invention of PCR and advances in automated solid phase synthesis of DNA have made this biological entity broadly available to all researchers across biological and chemical sciences. Thanks to the development of a variety of polymerization techniques, macromolecules can be synthesized with predetermined molecular weights and excellent structural control. In recent years these two exciting areas of research converged to generate a new type of nucleic acid hybrid material, consisting of oligodeoxynucleotides and organic polymers. By conjugating these two classes of materials, DNA block copolymers are generated exhibiting engineered material properties that cannot be realized with polymers or nucleic acids alone. Different synthetic strategies based on grafting onto routes in solution or on solid support were developed which afforded DNA block copolymers with hydrophilic, hydrophobic and thermoresponsive organic polymers in good yields. Beside the preparation of DNA block copolymers with a relative short DNA-segment, it was also demonstrated how these bioorganic polymers can be synthesized exhibiting large DNA blocks (>1000 bases) applying the polymerase chain reaction. Amphiphilic DNA block copolymers, which were synthesized fully automated in a DNA synthesizer, self-assemble into well-defined nanoparticles. Hybridization of spherical micelles with long DNA templates that encode several times the sequence of the micelle corona induced a transformation into rod-like micelles. The Watson-Crick motif aligned the hydrophobic polymer segments along the DNA double helix, which resulted in selective dimer formation. Even the length of the resulting nanostructures could be precisely adjusted by the number of nucleotides of the templates. In addition to changing the structural properties of DNA-b-PPO micelles, these materials were applied as 3D nanoscopic scaffolds for organic reactions. The DNA strands of the corona were organized by hydrophobic interactions of the organic polymer segments in such a fashion that several DNA-templated organic reactions proceeded in a sequence specific manner; either at the surface of the micelles or at the interface between the biological and the organic polymer blocks. The yields of reactions employing the micellar template were equivalent or better than existing template architectures. Aside from its physical properties and the morphologies achieved, an important requirement for a new biomaterial is its biocompatibility and interaction with living systems, i.e. human cells. The toxicity of the nanoparticles was analyzed by a cell proliferation assay. Motivated by the non-toxic nature of the amphiphilic DNA block copolymers, these nanoobjects were employed as drug delivery vehicles to target the anticancer drug to a tumor tissue. The micelles obtained from DNA block copolymers were easily functionalized with targeting units by hybridization. This facile route allowed studying the effect of the amount of targeting units on the targeting efficacy. By varying the site of functionalization, i.e. 5’ or 3’, the outcome of having the targeting unit at the periphery of the micelle or in the core of the micelle was studied. Additionally, these micelles were loaded with an anticancer drug, doxorubicin, and then applied to tumor cells. The viability of the cells was calculated in the presence and absence of targeting unit. It was demonstrated that the tumor cells bearing folate receptors showed a high mortality when the targeting unit was attached to the nanocarrier.
Resumo:
Covalent grafting mesogenic groups to the coordination cores of the parent mononuclear low-spin and spin-crossover compounds afforded metallomesogenic complexes of iron(II). In comparison with the parent complexes the spin-crossover properties of the alkylated derivatives are substantially modified. The type of the modification was found to be dependent on the properties of the parent system and the nature of the used anion, however, the general tendency is the destabilization of the low-spin state at the favor of spin-crossover or high-spin behavior below 400 K. The structural insight revealed the micro-segregated layered organization. The effect of the alkylation of the parent compounds consists first of all in the change of the lattice to a two-dimensional lamellar one retaining significant intermolecular contacts only within the ionic bilayers. The comprehensive analysis of the structural and thermodynamic data in the homologous series pointed at the mechanism of the interplay between the structural modification on melting and the induced anomalous change of the magnetic properties. A family of one-dimensional spin-crossover polymers was synthesized and characterized using a series of spectroscopic methods, X-ray powder diffraction, magnetic susceptibility measurements and differential scanning calorimetry. The copper analogue of was also synthesized and its crystal structure solved. In comparison with the mononuclear systems, the polymeric mesogens of iron(II) are less sensitive to the glass transition, which was attributed to the moderate concomitant variation of the structure. Nevertheless, the observed increase of the magnetic hysteresis with lengthening of the alkyl substituents was ascribed to the interplay of the structural reorganization of the coordination core due to spin-crossover with the structural delay in the spatial reorganization of the mesogenic substituents. The classification of mononuclear and polymeric metallomesogens according to the interactions between the structural- and the spin-transition and analysis of the data on the reported spin-crossover metallomesogens led to the separation of three types, namely: Type i: systems with coupling between the electronic structure of the iron(II) ions and the mesomorphic behavior of the substance; Type ii: systems where both transitions coexist in the same temperature region but are not coupled due to competition with the dehydration or due to negligible structural transformation; Type iii: systems where both transitions occur in different temperature regions and therefore are uncoupled. Fine-tuning, in particular regarding the temperature at which the spin-transition occurs with hysteresis properties responsible for the memory effect, are still a major challenge towards practical implementation of spin-crossover materials. A possible answer to the problem could be materials in which the spin-crossover transition is coupled with another transition easily controllable by external stimuli. In the present thesis we have shown the viability of the approach realized in the mesogenic systems with coupled phase- and spin-transitions.
Resumo:
In this work, metal nanoparticles produced by nanosphere lithography were studied in terms of their optical properties (in connection to their plasmon resonances), their potential application in sensing platforms - for thin layer sensing and bio-recognition events -, and for a particular case (the nanocrescents), for enhanced spectroscopy studies. The general preparation procedures introduced early in 2005 by Shumaker-Parry et al. to produce metallic nanocrescents were extended to give rise to more complex (isolated) structures, and also, by combining colloidal monolayer fabrication and plasma etching techniques, to arrays of them. The fabrication methods presented in this work were extended not only to new shapes or arrangements of particles, but included also a targeted surface tailoring of the substrates and the structures, using different thiol and silane compounds as linkers for further attachment of, i.e. polyelectrolyte layers, which allow for a controlled tailoring of their nanoenvironment. The optical properties of the nanocrescents were studied with conventional transmission spectroscopy; a simple multipole model was adapted to explain their behaviour qualitatively. In terms of applications, the results on thin film sensing using these particles show that the crescents present an interesting mode-dependent sensitivity and spatial extension. Parallel to this, the penetrations depths were modeled with two simplified schemes, obtaining good agreement with theory. The multiple modes of the particles with their characteristic decay lengths and sensitivities represent a major improvement for particle-sensing platforms compared to previous single resonance systems. The nanocrescents were also used to alter the emission properties of fluorophores placed close to them. In this work, green emitting dyes were placed at controlled distances from the structures and excited using a pulsed laser emitting in the near infrared. The fluorescence signal obtained in this manner should be connected to a two-photon processes triggered by these structures; obtaining first insight into plasmon-mediated enhancement phenomena. An even simpler and faster approach to produce plasmonic structures than that for the crescents was tested. Metallic nanodiscs and nanoellipses were produced by means of nanosphere lithography, extending a procedure reported in the literature to new shapes and optical properties. The optical properties of these particles were characterized by extinction spectroscopy and compared to results from the literature. Their major advantage is that they present a polarization-dependent response, like the nanocrescents, but are much simpler to fabricate, and the resonances can be tailored in the visible with relative ease. The sensing capabilities of the metallic nanodiscs were explored in the same manner as for the nanocrescents, meaning their response to thin layers and to bio-recognition events on their surface. The sensitivity of these nanostructures to thin films proved to be lower than that of the crescents, though in the same order of magnitude. Experimental information about the near field extension for the Au nanodiscs of different sizes was also extracted from these measurements. Further resonance-tailoring approaches based on electrochemical deposition of metals on the nanodiscs were explored, as a means of modifying plasmon resonances by changing surface properties of the nanoparticles. First results on these experiments would indicate that the deposition of Ag on Au on a submonolayer coverage level can lead to important blue-shifts in the resonances, which would open a simple way to tailor resonances by changing material properties in a local manner.
Resumo:
Outdoor bronzes exposed to the environment form naturally a layer called patina, which may be able to protect the metallic substrate. However, since the last century, with the appearance of acid rains, a strong change in the nature and properties of the copper based patinas occurred [1]. Studies and general observations have established that bronze corrosion patinas created by acid rain are not only disfiguring in terms of loss of detail and homogeneity, but are also unstable [2]. The unstable patina is partially leached away by rainwater. This leaching is represented by green streaking on bronze monuments [3]. Because of the instability of the patina, conservation techniques are usually required. On a bronze object exposed to the outdoor environment, there are different actions of the rainfall and other atmospheric agents as a function of the monument shape. In fact, we recognize sheltered and unsheltered areas as regards exposure to rainwater [4]. As a consequence of these different actions, two main patina types are formed on monuments exposed to the outdoor environment. These patinas have different electrochemical, morphological and compositional characteristics [1]. In the case of sheltered areas, the patina contains mainly copper products, stratified above a layer strongly enriched in insoluble Sn oxides, located at the interface with the uncorroded metal. Moreover, different colors of the patina result from the exposure geometry. The surface color may be pale green for unsheltered areas, and green and mat black for sheltered areas [4]. Thus, in real outdoor bronze monuments, the corrosion behavior is strongly influenced by the exposure geometry. This must be taken into account when designing conservation procedures, since the patina is in most cases the support on which corrosion inhibitors are applied. Presently, for protecting outdoor bronzes against atmospheric corrosion, inhibitors and protective treatments are used. BTA and its derivatives, which are the most common inhibitors used for copper and its alloy, were found to be toxic for the environment and human health [5, 6]. Moreover, it has been demonstrated that BTA is efficient when applied on bare copper but not as efficient when applied on bare bronze [7]. Thus it was necessary to find alternative compounds. Silane-based inhibitors (already successfully tested on copper and other metallic substrates [8]), were taken into consideration as a non-toxic, environmentally friendly alternative to BTA derivatives for bronze protection. The purpose of this thesis was based on the assessment of the efficiency of a selected compound, to protect the bronze against corrosion, which is the 3-mercapto-propyl-trimethoxy-silane (PropS-SH). It was selected thanks to the collaboration with the Corrosion Studies Centre “Aldo Daccò” at the Università di Ferrara. Since previous studies [9, 10, 11] demonstrated that the addition of nanoparticles to silane-based inhibitors leads to an increase of the protective efficiency, we also wanted to evaluate the influence of the addition of CeO2, La2O3, TiO2 nanoparticles on the protective efficiency of 3-mercapto-propyl-trimethoxy-silane, applied on pre-patinated bronze surfaces. This study is the first section of the thesis. Since restorers have to work on patinated bronzes and not on bare metal (except for contemporary art), it is important to be able to recreate the patina, under laboratory conditions, either in sheltered or unsheltered conditions to test the coating and to obtain reliable results. Therefore, at the University of Bologna, different devices have been designed to simulate the real outdoor conditions and to create a patina which is representative of real application conditions of inhibitor or protective treatments. In particular, accelerated ageing devices by wet & dry (simulating the action of stagnant rain in sheltered areas [12]) and by dropping (simulating the leaching action of the rain in unsheltered areas [1]) tests were used. In the present work, we used the dropping test as a method to produce pre-patinated bronze surfaces for the application of a candidate inhibitor as well as for evaluating its protective efficiency on aged bronze (unsheltered areas). In this thesis, gilded bronzes were also studied. When they are exposed to the outside environment, a corrosion phenomenon appears which is due to the electrochemical couple gold/copper where copper is the anode. In the presence of an electrolyte, this phenomenon results in the formation of corrosion products than will cause a blistering of the gold (or a break-up and loss of the film in some cases). Moreover, because of the diffusion of the copper salts to the surface, aggregates and a greenish film will be formed on the surface of the sample [13]. By coating gilded samples with PropS-SH and PropS-SH containing nano-particles and carrying out accelerated ageing by the dropping test, a discussion is possible on the effectiveness of this coating, either with nano-particles or not, against the corrosion process. This part is the section 2 of this thesis. Finally, a discussion about laser treatment aiming at the assessment of reversibility/re-applicability of the PropS-SH coating can be found in section 3 of this thesis. Because the protective layer loses its efficiency with time, it is necessary to find a way of removing the silane layer, before applying a new one on the “bare” patina. One request is to minimize the damages that a laser treatment would create on the patina. Therefore, different laser fluences (energy/surface) were applied on the sample surface during the treatment process in order to find the best range of fluence. In particular, we made a characterization of surfaces before and after removal of PropS-SH (applied on a naturally patinated surface, and subsequently aged by natural exposure) with laser methods. The laser removal treatment was done by the CNR Institute of Applied Physics “Nello Carrara” of Sesto Fiorentino in Florence. In all the three sections of the thesis, a range of non-destructive spectroscopic methods (Scanning Electron Microscopy with Energy Dispersive Spectroscopy (SEM-EDS), μ-Raman spectroscopy, X-Ray diffractometry (XRD)) were used for characterizing the corroded surfaces. AAS (Atomic Absorption Spectroscopy) was used to analyze the ageing solutions from the dropping test in sections 1 and 2.
Resumo:
In dieser Arbeit werden Strukturen beschrieben, die mit Polymeren auf Oberflächen erzeugt wurden. Die Anwendungen reichen von PMMA und PNIPAM Polymerbürsten, über die Restrukturierung von Polystyrol durch Lösemittel bis zu 3D-Strukturen, die aus PAH/ PSS Polyelektrolytmultischichten bestehen. Im ersten Teil werden Polymethylmethacrylat (PMMA) Bürsten in der ionischen Flüssigkeit 1-Butyl-3-Methylimidazolium Hexafluorophospat ([Bmim][PF6]) durch kontrollierte radikalische Polymerisation (ATRP) hergestellt. Kinetische Untersuchungen zeigten ein lineares und dichtes Bürstenwachstum mit einer Wachstumsrate von 4600 g/mol pro nm. Die durchschnittliche Pfropfdichte betrug 0.36 µmol/m2. Als Anwendung wurden Mikrotropfen bestehend aus der ionischen Flüssigkeit, Dimethylformamid und dem ATRP-Katalysator benutzt, um in einer definierten Geometrie Polymerbürsten auf Silizium aufzubringen. Auf diese Weise lässt sich eine bis zu 13 nm dicke Beschichtung erzeugen. Dieses Konzept ist durch die Verdampfung des Monomers Methylmethacrylat (MMA) limitiert. Aus einem 1 µl großen Tropfen aus ionischer Flüssigkeit und MMA (1:1) verdampft MMA innerhalb von 100 s. Daher wurde das Monomer sequentiell zugegeben. Der zweite Teil konzentriert sich auf die Strukturierung von Oberflächen mit Hilfe einer neuen Methode: Tintendruck. Ein piezoelektrisch betriebenes „Drop-on-Demand“ Drucksystem wurde verwendet, um Polystyrol mit 0,4 nl Tropfen aus Toluol zu strukturieren. Die auf diese Art und Weise gebildeten Mikrokrater können Anwendung als Mikrolinsen finden. Die Brennweite der Mikrolinsen kann über die Anzahl an Tropfen, die für die Strukturierung verwendet werden, eingestellt werden. Theoretisch und experimentell wurde die Brennweite im Bereich von 4,5 mm bis 0,21 mm ermittelt. Der zweite Strukturierungsprozess nutzt die Polyelektrolyte Polyvinylamin-Hydrochlorid (PAH) und Polystyrolsulfonat (PSS), um 3D-Strukturen wie z.B. Linien, Schachbretter, Ringe, Stapel mit einer Schicht für Schicht Methode herzustellen. Die Schichtdicke für eine Doppelschicht (DS) liegt im Bereich von 0.6 bis 1.1 nm, wenn NaCl als Elektrolyt mit einer Konzentration von 0,5 mol/l eingesetzt wird. Die Breite der Strukturen beträgt im Mittel 230 µm. Der Prozess wurde erweitert, um Nanomechanische Cantilever Sensoren (NCS) zu beschichten. Auf einem Array bestehend aus acht Cantilevern wurden je zwei Cantilever mit fünf Doppelschichten PAH/ PSS und je zwei Cantilever mit zehn Doppelschichten PAH/ PSS schnell und reproduzierbar beschichtet. Die Massenänderung für die individuellen Cantilever war 0,55 ng für fünf Doppelschichten und 1,08 ng für zehn Doppelschichten. Der daraus resultierende Sensor wurde einer Umgebung mit definierter Luftfeuchtigkeit ausgesetzt. Die Cantilever verbiegen sich durch die Ausdehnung der Beschichtung, da Wasser in das Polymer diffundiert. Eine maximale Verbiegung von 442 nm bei 80% Luftfeuchtigkeit wurde für die mit zehn Doppelschichten beschichteten Cantilever gefunden. Dies entspricht einer Wasseraufnahme von 35%. Zusätzlich konnte aus den Verbiegungsdaten geschlossen werden, dass die Elastizität der Polyelektrolytmultischichten zunimmt, wenn das Polymer gequollen ist. Das thermische Verhalten in Wasser wurde im nächsten Teil an nanomechanischen Cantilever Sensoren, die mit Poly(N-isopropylacrylamid)bürsten (PNIPAM) und plasmapolymerisiertem N,N-Diethylacrylamid beschichtet waren, untersucht. Die Verbiegung des Cantilevers zeigte zwei Bereiche: Bei Temperaturen kleiner der niedrigsten kritischen Temperatur (LCST) ist die Verbiegung durch die Dehydration der Polymerschicht dominiert und bei Temperaturen größer der niedrigsten kritischen Temperatur (LCST) reagiert der Cantilever Sensor überwiegend auf Relaxationsprozesse innerhalb der kollabierten Polymerschicht. Es wurde gefunden, dass das Minimum in der differentiellen Verbiegung mit der niedrigsten kritischen Temperatur von 32°C und 44°C der ausgewählten Polymeren übereinstimmt. Im letzten Teil der Arbeit wurden µ-Reflektivitäts- und µ-GISAXS Experimente eingeführt als neue Methoden, um mikrostrukturierte Proben wie NCS oder PEM Linien mit Röntgenstreuung zu untersuchen. Die Dicke von jedem individuell mit PMMA Bürsten beschichtetem NCS ist im Bereich von 32,9 bis 35,2 nm, was mit Hilfe von µ-Reflektivitätsmessungen bestimmt wurde. Dieses Ergebnis kann mit abbildender Ellipsometrie als komplementäre Methode mit einer maximalen Abweichung von 7% bestätigt werden. Als zweites Beispiel wurde eine gedruckte Polyelektrolytmultischicht aus PAH/PSS untersucht. Die Herstellungsprozedur wurde so modifiziert, dass Goldnanopartikel in die Schichtstruktur eingebracht wurden. Durch Auswertung eines µ-GISAXS Experiments konnte der Einbau der Partikel identifiziert werden. Durch eine Anpassung mit einem Unified Fit Modell wurde herausgefunden, dass die Partikel nicht agglomeriert sind und von einer Polymermatrix umgeben sind.
Resumo:
The aim of the work was to study the correlation between the orientation and excited-state lifetimes of organic dyes close to dielectric interfaces. For this purpose, an experimental setup was designed and built, guiding the light through a prism in total internal reflection geometry. Fluorescence intensities and lifetimes for an ensemble of dye molecules were analyzed as a function of the excitation and detection polarizations. Working close to the total internal reflection angle, the differences between polarization combinations were enhanced. A classical electromagnetic model that assumes a chromophore as a couple of point-like electrical dipoles was developed. A numerical method to calculate the excitation and emission of dye molecules embedded in a multilayer system was implemented, by which full simulation of the time resolved fluorescence experiments was achieved. Free organic dyes and organic dyes covalently bound to polyelectrolyte chains were used. The polymer functionalization process avoided aggregation and provided control over the dyes position, within a few nanometers to the interface. Moreover, by varying the pH, the polymer chains could be deposited on different substrates with different conformations and the resulting fluorescence characteristics analyzed. Initially the fluorescence of organic dyes embedded in a polymer matrix was studied as a function of the distance between the fluorophores and the polymer-air interface. The non-radiative decay rate, vacuum decay rate and the relative angle between the excitation and emission dipoles of the chromophores could be determined. Different free organic dyes were deposited onto different dielectric spacers, as close as possible to the air-dielectric interface. Surprisingly, the fluorescence characteristics of dyes deposited onto polyelectrolyte layer were in good agreement with theoretical predictions of dyes in a polymer matrix, even when the layer was only 2 nm thick. When functionalized chains were deposited at low pH, on top of a polyelectrolyte spacer, the fluorescence had the characteristics of emitters embedded in a polymer matrix as well. Surface deposition at high pH showed an intermediate behaviour between emitters embedded in polymer and on top of the surface, in air. In general, for low pH values, the chains are deposited on a substrate in a train-like conformation. For high pH values, the chains are deposited in a loop-like conformation. As a consequence at low pH the functionalized polymer strongly interdigitates with the polyelectrolyte chains of the spacer, bringing most of the dyes inside the polymer. Thus, the fluorophores may experience the polymer as surrounding environment. On the other hand, for high pH values the dye-loaded chains adsorbed have a conformational arrangement of dense loops that extend away from the surface. Therefore many fluorophores experience the air as surrounding environment. Changing the spacer from polyelectrolyte to negatively charged silane produced contradictory results for lifetimes and intensities. The fluorescence intensities indicated the behaviour of emitters embedded in a polymer matrix, regardless of the pH value. On the other hand, for low pH values, the excited-state lifetimes showed that the emitters behaved as in air. For higher pH values, an intermediate behaviour between fluorophores located within and above of a dielectric film was observed. The poor agreement between theoretical and experimental data may be due to the simplified model utilized, by which the dipoles are assumed either in one side or in the other with respect to a geometrical air-dielectric interface. In the case when the dielectric film is constituted by the functionalized polymer chains themselves, reality is more complex and a different model may apply. Nevertheless, possible applications of the technique arise from a qualitative analysis.
Resumo:
In der vorliegenden Arbeit wurden experimentelle Untersuchungen zu gepfropften Polymerfilmen durchgeführt. Dabei wurden endgepfropfte poly-methyl-methacrylate (PMMA) Bürsten hergestellt durch „grafting from“ Methoden und polystyrol (PS)/ poly-vinyl-methyl-ether (PVME) Polymerfilme gepfropft auf UV sensitiven Oberflächen untersucht. Zur Strukturuntersuchung wurden die hergestellten Systeme wurden mit Rasterkraftmikroskopie (engl.: Surface Probe Microscopy, SPM), Röntgen - und Neutronenreflektivitätsmessungen, sowie mit Röntgenstreuung unter streifenden Einfall (engl.: Grazing Incidence Small Angle X-Ray Scattering, GISAXS) untersucht. rnEs wurde gezeigt, dass ein aus der Transmissionsstreuung bekanntes Model auch für auch für die GISAXS Analyse polydisperser Polymerdomänen und Kolloidsysteme verwendet werden kann. Der maximale Fehler durch die gemachten Näherungen wurde auf < 20% abgeschätzt.rnErgebnisse aus der Strukturanalyse wurden mit mechanischen Filmeigenschaften verknüpft. Dazu wurden mechanische Spannungsexperimente durchgeführt. Hierzu wurden die zu untersuchenden Filme selektiv auf einzelne Mikro-Federbalken-Sensoren (engl.: Micro Cantilever Sensor, MCS) der MCS Arrays aufgebracht. Dies wurde durch Maskierungstechniken und Mikro-Kontaktdrucken bewerkstelligt. rnPhasenübergansexperimente der gepfropften PS/PVME Filme haben gezeigt, dass die Möglichkeit einer Polymer/Polymer Phasenseparation stark von Propfpunktdichte der gebundenen Polymerketten mit der Oberfläche abhängt. PS/PVME Filmsysteme mit hohen Pfropfpunktdichten zeigten keinen Phasenübergang. Bei niedrig gepfropften Filmsystemen waren hingegen Polymer/Polymer Phasenseparationen zu beobachten. Es wurde geschlussfolgert, dass die gepfropften Polymersysteme einen hinreichenden Grad an entropischen Freiheitsgraden benötigen um eine Phasenseparation zu zeigen. Mechanische Spannungsexperimente haben dabei das Verstehen der Phasenseparationsmechanismen möglich gemacht.rnAus Quellexperimenten dichtgepfropfter PMMA Bürsten, wurden Lösungsmittel-Polymer Wechselwirkungsparameter (-Parameter) bestimmt. Dabei wurde festgestellt, dass sich die erhaltenen Parameter aufgrund von Filmbenetzung und entropischen Effekten maßgeblich von den errechneten Bulkwerten unterscheiden. Weiterhin wurden nicht reversible Kettenverschlaufungseffekt beobachtet.
Resumo:
Con il termine IPC (precondizionamento ischemico) si indica un fenomeno per il quale, esponendo il cuore a brevi cicli di ischemie subletali prima di un danno ischemico prolungato, si conferisce una profonda resistenza all’infarto, una delle principali cause di invalidità e mortalità a livello mondiale. Studi recenti hanno suggerito che l’IPC sia in grado di migliorare la sopravvivenza, la mobilizzazione e l’integrazione di cellule staminali in aree ischemiche e che possa fornire una nuova strategia per potenziare l’efficacia della terapia cellulare cardiaca, un’area della ricerca in continuo sviluppo. L’IPC è difficilmente trasferibile nella pratica clinica ma, da anni, è ben documentato che gli oppioidi e i loro recettori hanno un ruolo cardioprotettivo e che attivano le vie di segnale coinvolte nell’IPC: sono quindi candidati ideali per una possibile terapia farmacologica alternativa all’IPC. Il trattamento di cardiomiociti con gli agonisti dei recettori oppioidi Dinorfina B, DADLE e Met-Encefalina potrebbe proteggere, quindi, le cellule dall’apoptosi causata da un ambiente ischemico ma potrebbe anche indurle a produrre fattori che richiamino elementi staminali. Per testare quest’ipotesi è stato messo a punto un modello di “microambiente ischemico” in vitro sui cardiomioblasti di ratto H9c2 ed è stato dimostrato che precondizionando le cellule in modo “continuativo” (ventiquattro ore di precondizionamento con oppioidi e successivamente ventiquattro ore di induzione del danno, continuando a somministrare i peptidi oppioidi) con Dinorfina B e DADLE si verifica una protezione diretta dall’apoptosi. Successivamente, saggi di migrazione e adesione hanno mostrato che DADLE agisce sulle H9c2 “ischemiche” spronandole a creare un microambiente capace di attirare cellule staminali mesenchimali umane (FMhMSC) e di potenziare le capacità adesive delle FMhMSC. I dati ottenuti suggeriscono, inoltre, che la capacità del microambiente ischemico trattato con DADLE di attirare le cellule staminali possa essere imputabile alla maggiore espressione di chemochine da parte delle H9c2.
Resumo:
A new class of inorganic-organic hybrid polymers could successfully been prepared by the combination of different polymerization techniques. The access to a broad range of organic polymers incorporated into the hybrid polymer was realized using two independent approaches.rnIn the first approach a functional poly(silsesquioxane) (PSSQ) network was pre-formed, which was capable to initiate a controlled radical polymerization to graft organic vinyl-type monomers from the PSSQ precursor. As controlled radical polymerization techniques atom transfer radical polymerization (ATRP), as well as reversible addition fragmentation chain transfer (RAFT) polymerization could be used after defined tuning of the PSSQ precursor either toward a PSSQ macro-initiator or to a PSSQ macro-chain-transfer-agent. The polymerization pathway, consisting of polycondensation of trialkoxy-silanes followed by grafting-from polymerization of different monomers, allowed synthesis of various functional hybrid polymers. A controlled synthesis of the PSSQ precursors could successfully be performed using a microreactor setup; the molecular weight could be adjusted easily while the polydispersity index could be decreased well below 2.rnThe second approach aimed to incorporate differently derived organic polymers. As examples, polycarbonate and poly(ethylene glycol) were end-group-modified using trialkoxysilanes. After end-group-functionalization these organic polymers could be incorporated into a PSSQ network.rnThese different hybrid polymers showed extraordinary coating abilities. All polymers could be processed from solution by spin-coating or dip-coating. The high amount of reactive silanol moieties in the PSSQ part could be cross-linked after application by annealing at 130° for 1h. Not only cross-linking of the whole film was achieved, which resulted in mechanical interlocking with the substrate, also chemical bonds to metal or metal oxide surfaces were formed. All coating materials showed high stability and adhesion onto various underlying materials, reaching from metals (like steel or gold) and metal oxides (like glass) to plastics (like polycarbonate or polytetrafluoroethylene).rnAs the material and the synthetic pathway were very tolerant toward different functionalities, various functional monomers could be incorporated in the final coating material. The incorporation of N-isopropylacrylamide yielded in temperature-responsive surface coatings, whereas the incorporation of redox-active monomers allowed the preparation of semi-conductive coatings, capable to produce smooth hole-injection layers on transparent conductive electrodes used in optoelectronic devices.rnThe range of possible applications could be increased tremendously by incorporation of reactive monomers, capable to undergo fast and quantitative conversions by polymer-analogous reactions. For example, grafting active esters from a PSSQ precursor yielded a reactive surface coating after application onto numerous substrates. Just by dipping the coated substrate into a solution of a functionalized amine, the desired function could be immobilized at the interface as well as throughout the whole film. The obtained reactive surface coatings could be used as basis for different functional coatings for various applications. The conversion with specifically tuned amines yielded in surfaces with adjustable wetting behaviors, switchable wetting behaviors or as recognition element for surface-oriented bio-analytical devices. The combination of hybrid materials with orthogonal reactivities allowed for the first time the preparation of multi-reactive surfaces which could be functionalized sequentially with defined fractions of different groups at the interface. rnThe introduced concept to synthesis functional hybrid polymers unifies the main requirements on an ideal coating material. Strong adhesion on a wide range of underlying materials was achieved by secondary condensation of the PSSQ part, whereas the organic part allowed incorporation of various functionalities. Thus, a flexible platform to create functional and reactive surface coatings was achieved, which could be applied to different substrates. rn
Gene expression analysis in ‘Candidatus Phytoplasma mali’-resistant and -susceptible Malus genotypes
Resumo:
Apple proliferation (AP) disease is the most important graft-transmissible and vector-borne disease of apple in Europe. ‘Candidatus Phytoplasma mali’ (Ca. P. mali) is the causal agent of AP. Apple (Malus x domestica) and other Malus species are the only known woody hosts. In European apple orchards, the cultivars are mainly grafted on one rootstock, M. x domestica cv. M9. M9 like all other M. x domestica cultivars is susceptible to ‘Ca. P. mali’. Resistance to AP was found in the wild genotype Malus sieboldii (MS) and in MS-derived hybrids but they were characterised by poor agronomic value. The breeding of a new rootstock carrying the resistant and the agronomic traits was the major aim of a project of which this work is a part. The objective was to shed light into the unknown resistance mechanism. The plant-phytoplasma interaction was studied by analysing differences between the ‘Ca. P. mali’-resistant and -susceptible genotypes related to constitutively expressed genes or to induced genes during infection. The cDNA-Amplified Fragment Length Polymorphism (cDNA-AFLP) technique was employed in both approaches. Differences related to constitutively expressed genes were identified between two ‘Ca. P. mali’-resistant hybrid genotypes (4551 and H0909) and the ‘Ca. P. mali’-susceptible M9. 232 cDNA-AFLP bands present in the two resistant genotypes but absent in the susceptible one were isolated but several different products associated to each band were found. Therefore, two different macroarray hybridisation experiments were performed with the cDNA-AFLP fragments yielding 40 sequences encoding for genes of unknown function or a wide array of functions including plant defence. In the second approach, individuation and analysis of the induced genes was carried out exploiting an in vitro system in which healthy and ‘Ca. P. mali’-infected micropropagated plants were maintained under controlled conditions. Infection trials using in vitro grafting of ‘Ca. P. mali’ showed that the resistance phenotype could be reproduced in this system. In addition, ex vitro plants were generated as an independent control of the genes differentially expressed in the in vitro plants. The cDNA-AFLP analysis in in vitro plants yielded 63 bands characterised by over-expression in the infected state of both the H0909 and MS genotypes. The major part (37 %) of the associated sequences showed homology with products of unknown function. The other genes were involved in plant defence, energy transport/oxidative stress response, protein metabolism and cellular growth. Real-time qPCR analysis was employed to validate the differential expression of the genes individuated in the cDNA-AFLP analysis. Since no internal controls were available for the study of the gene expression in Malus, an analysis on housekeeping genes was performed. The most stably expressed genes were the elongation factor-1 α (EF1) and the eukaryotic translation initiation factor 4-A (eIF4A). Twelve out of 20 genes investigated through qPCR were significantly differentially expressed in at least one genotype either in in vitro plants or in ex vitro plants. Overall, about 20% of the genes confirmed their cDNA-AFLP expression pattern in M. sieboldii or H0909. On the contrary, 30 % of the genes showed down-regulation or were not differentially expressed. For the remaining 50 % of the genes a contrasting behaviour was observed. The qPCR data could be interpreted as follows: the phytoplasma infection unbalance photosynthetic activity and photorespiration down-regulating genes involved in photosynthesis and in the electron transfer chain. As result, and in contrast to M. x domestica genotypes, an up-regulation of genes of the general response against pathogens was found in MS. These genes involved the pathway of H2O2 and the production of secondary metabolites leading to the hypothesis that a response based on the accumulation of H2O2 in MS would be at the base of its resistance. This resembles a phenomenon known as “recovery” where the spontaneous remission of the symptoms is observed in old susceptible plants but occurring in a stochastic way while the resistance in MS is an inducible but stable feature. As additional product of this work three cDNA-AFLP-derived markers were developed which showed independent distribution among the seedlings of two breeding progenies and were associated to a genomic region characteristic of MS. These markers will contribute to the development of molecular markers for the resistance as well as to map the resistance on the Malus genome.
Resumo:
During the last years great effort has been devoted to the fabrication of superhydrophobic surfaces because of their self-cleaning properties. A water drop on a superhydrophobic surface rolls off even at inclinations of only a few degrees while taking up contaminants encountered on its way. rnSuperhydrophobic, self-cleaning coatings are desirable for convenient and cost-effective maintenance of a variety of surfaces. Ideally, such coatings should be easy to make and apply, mechanically resistant, and long-term stable. None of the existing methods have yet mastered the challenge of meeting all of these criteria.rnSuperhydrophobicity is associated with surface roughness. The lotus leave, with its dual scale roughness, is one of the most efficient examples of superhydrophobic surface. This thesis work proposes a novel technique to prepare superhydrophobic surfaces that introduces the two length scale roughness by growing silica particles (~100 nm in diameter) onto micrometer-sized polystyrene particles using the well-established Stöber synthesis. Mechanical resistance is conferred to the resulting “raspberries” by the synthesis of a thin silica shell on their surface. Besides of being easy to make and handle, these particles offer the possibility for improving suitability or technical applications: since they disperse in water, multi-layers can be prepared on substrates by simple drop casting even on surfaces with grooves and slots. The solution of the main problem – stabilizing the multilayer – also lies in the design of the particles: the shells – although mechanically stable – are porous enough to allow for leakage of polystyrene from the core. Under tetrahydrofuran vapor polystyrene bridges form between the particles that render the multilayer-film stable. rnMulti-layers are good candidate to design surfaces whose roughness is preserved after scratch. If the top-most layer is removed, the roughness can still be ensured by the underlying layer.rnAfter hydrophobization by chemical vapor deposition (CVD) of a semi-fluorinated silane, the surfaces are superhydrophobic with a tilting angle of a few degrees. rnrnrn
Resumo:
In this work polymer brushes on both flat and curved substrates were prepared by grafting from and grafting to techniques. The brushes on flat substrates were patterned on the µm-scale with the use of an inkjet printer. Thus it was demonstrated that chemistry with an inkjet printer is feasible. The inkjet printer was used to deposit microdroplets of acid. The saponification of surface-immobilized ATRP initiators containing an ester bond occurred in these microdroplets. The changes in the monolayer of ester molecules due to saponification were amplified by SI-ATRP. It was possible to correlate the polymer brush thickness to effectiveness of saponification. The use of an inkjet printer allowed for simultaneously screening of parameters such as type of acid, concentration of acid, and contact time between acid and surface. A dip-coater was utilized in order to test the saponification independent of droplet evaporation. The advantage of this developed process is its versatility. It can be applied to all surface-immobilized initiators containing ester bonds. The technique has additionally been used to selectively defunctionalize the initiator molecules covering a microcantilever on one side of a cantilever. An asymmetric coating of the cantilever with polymer brushes was thus generated. An asymmetric coating allows the use of a microcantilever for sensing applications. The preparation of nanocomposites comprised of polyorganosiloxane microgel particles functionalized with poly(ethyl methacrylate) (PEMA) brushes and linear, but entangled, PEMA chains is described in the second major part of this thesis. Measurement of the interparticle distance was performed using scanning probe microscopy and grazing incidence small angle X-ray scattering. The matrix molecular weight at which the nanocomposite showed microphase separation was related to abrupt changes in inter-particle distance. Microphase separation occurred once the matrix molecular exceeded the molecular weight of the brushes. The trigger for the microphase separation was a contraction of the polymer brushes, as the measurements of inter-particle distance have revealed. The brushes became impenetrable for the matrix chains upon contraction and thus behaved as hard spheres. The contraction led to a loss of anchoring between particles and matrix, as shown by nanowear tests using an atomic force microscope. Polyorganosiloxane microgel particles were functionalized with 13C enriched poly(ethyl methacrylate) brushes. New synthetic pathways were developed in order to enrich not the entire brush with 13C, but only exclusively selected regions. 13C chemical shift anisotropy, an advanced NMR technique, can thus be used in order to gather information about the extended conformations in the 13C enriched regions of the PEMA chains immobilized on the µ-gel-g-PEMA particles. The third part of this thesis deals with the grafting to of polymeric fullerene materials on silicon substrates. Active ester chemistry was employed in order to prepare the polymeric fullerene materials and graft these materials covalently on amino-functionalized silicon substrates.rn
Resumo:
Antibody microarrays are of great research interest because of their potential application as biosensors for high-throughput protein and pathogen screening technologies. In this active area, there is still a need for novel structures and assemblies providing insight in binding interactions such as spherical and annulus-shaped protein structures, e.g. for the utilization of curved surfaces for the enhanced protein-protein interactions and detection of antigens. Therefore, the goal of the presented work was to establish a new technique for the label-free detection of bio-molecules and bacteria on topographically structured surfaces, suitable for antibody binding.rnIn the first part of the presented thesis, the fabrication of monolayers of inverse opals with 10 μm diameter and the immobilization of antibodies on their interior surface is described. For this purpose, several established methods for the linking of antibodies to glass, including Schiff bases, EDC/S-NHS chemistry and the biotin-streptavidin affinity system, were tested. The employed methods included immunofluorescence and image analysis by phase contrast microscopy. It could be shown that these methods were not successful in terms of antibody immobilization and adjacent bacteria binding. Hence, a method based on the application of an active-ester-silane was introduced. It showed promising results but also the need for further analysis. Especially the search for alternative antibodies addressing other antigens on the exterior of bacteria will be sought-after in the future.rnAs a consequence of the ability to control antibody-functionalized surfaces, a new technique employing colloidal templating to yield large scale (~cm2) 2D arrays of antibodies against E. coli K12, eGFP and human integrin αvβ3 on a versatile useful glass surface is presented. The antibodies were swept to reside around the templating microspheres during solution drying, and physisorbed on the glass. After removing the microspheres, the formation of annuli-shaped antibody structures was observed. The preserved antibody structure and functionality is shown by binding the specific antigens and secondary antibodies. The improved detection of specific bacteria from a crude solution compared to conventional “flat” antibody surfaces and the setting up of an integrin-binding platform for targeted recognition and surface interactions of eukaryotic cells is demonstrated. The structures were investigated by atomic force, confocal and fluorescence microscopy. Operational parameters like drying time, temperature, humidity and surfactants were optimized to obtain a stable antibody structure.
Resumo:
Mit Hilfe von Molekulardynamik-Simulationen untersuchen wir bürstenartige Systeme unter guten Lösungsmittelbedingungen. Diese Systeme sind, dank ihren vielfältigen Beschaffenheiten, die von Molekularparametern und äußeren Bedingungen abhängig sind, wichtig für viele industrielle Anwendungen. Man vermutet, dass die Polymerbürsten eine entscheidende Rolle in der Natur wegen ihrer einzigartigen Gleiteigenschaften spielen. Ein vergröbertes Modell wird verwendet, um die strukturellen und dynamischen Eigenschaften zweier hochkomprimierter Polymerbürsten, die eine niedrige Reibung aufweisen, zu untersuchen. Allerdings sind die Lubrikationseigenschaften dieser Systeme, die in vielen biologischen Systemen vorhanden sind, beeinflußt. Wir untersuchen so-genannte "weiche Kolloide", die zwischen den beiden Polymerbürsten eingebettet sind, und wie diese Makroobjekte auf die Polymerbürsten wirken.rnrnNicht-Gleichgewichts-Molekulardynamik-Simulationen werden durchgeführt, in denen die hydrodynamischen Wechselwirkungen durch die Anwendung des DPD-Thermostaten mit expliziten Lösungsmittelmolekülen berücksichtigt werden. Wir zeigen, dass die Kenntnis der Gleichgewichtseigenschaften des Systems erlaubt, dynamische Nichtgleichgewichtsigenschaften der Doppelschicht vorherzusagen.rnrnWir untersuchen, wie die effektive Wechselwirkung zwischen kolloidalen Einschlüßen durch die Anwesenheit der Bürsten (in Abhängigkeit der Weichheit der Kolloide und der Pfropfdichte der Bürsten) beeinflußt wird. Als nächsten Schritt untersuchen wir die rheologische Antwort von solchen komplexen Doppelschichten auf Scherung. Wir entwickeln eine Skalen-Theorie, die die Abhängigkeit der makroskopischen Transporteigenschaften und der lateralen Ausdehnung der verankerten Ketten von der Weissenberg Zahl oberhalb des Bereichs, in dem die lineare Antwort-Theorie gilt, voraussagt. Die Vorhersagen der Theorie stimmen gut mit unseren und früheren numerischen Ergebnissen und neuen Experimenten überein. Unsere Theorie bietet die Möglichkeit, die Relaxationszeit der Doppelschicht zu berechnen. Wenn diese Zeit mit einer charakteristischen Längenskala kombiniert wird, kann auch das ''transiente'' (nicht-stationäre) Verhalten beschrieben werden.rnrnrnWir untersuchen die Antwort des Drucktensors und die Deformation der Bürsten während der Scherinvertierung für grosse Weissenberg Zahlen. Wir entwickeln eine Vorhersage für die charakteristische Zeit, nach der das System wieder den stationären Zustand erreicht.rnrnrnElektrostatik spielt eine bedeutende Rolle in vielen biologischen Prozessen. Die Lubrikationseigenschaften der Polymerbürsten werden durch die Anwesenheit langreichweitiger Wechselwirkungen stark beeinflusst. Für unterschiedliche Stärken der elektrostatischen Wechselwirkungen untersuchen wir rheologische Eigenschaften der Doppelschicht und vergleichen mit neutralen Systemen. Wir studieren den kontinuierlichen Übergang der Systemeigenschaften von neutralen zu stark geladenen Bürsten durch Variation der Bjerrumlänge und der Ladungsdichte.
Resumo:
In der vorliegenden Arbeit konnte gezeigt werden, dass durch die grafting-from-Methode verschiedene geschützte Polypeptidbürsten basierend auf L-glutaminsäure, L-asparaginsäure, L-lysin und L-ornithin synthetisch zugänglich sind. Zur Verwirklichung dieser Synthesestrategie wurde mehrstufig ein Makroinitiator auf Basis von N-methacrylamid-1,6-diaminohexan hergestellt, der die ringöffnende Polymerisation von Leuchs´schen Anhydriden zur Entwicklung von geschützten Polypeptidseitenketten initiieren kann. Durch stark saure bzw. alkalische Abspaltbedingungen war es möglich, die Schutzgruppen bei allen geschützten Bürsten bis auf eine Spezies erfolgreich zu entfernen. Weitergehende Untersuchungen an den positiv bzw. negativ geladenen Polyelektrolytbürsten mittels statischer Lichtstreuung und Kapillarelektrophorese zeigten, dass lediglich die Z-geschützten Poly-L-lysinbürsten ohne Kettenabbau entschützt werden konnten. In allen anderen Fällen wurden nach Abspaltung der Schutzgruppen lineare Kettenfragmente detektiert. Durch die Zugabe von NaClO4 oder Methanol zu den wässrigen Lösungen der Poly-L-lysinbürsten konnte mittels CD-Spektroskopie gezeigt werden, dass die Seitenketten von einer ungeordneten Konformation in eine helikale Konformation übergehen. In weiterführenden Experimenten wurde mittels statischer Lichtstreuung, dynamischer Lichtstreuung, SAXS, und AFM-Aufnahmen in Lösung bewiesen, dass die helikale Konformation der Seitenketten eine deutliche Abnahme des Zylinderquerschnitts und des Querschnittträgheitsradius zur Folge hat, die Topologie der Bürste allerdings unverändert bleibt. Weiterhin konnte mittels Kapillarelektrophorese die elektrophoretische Mobilität der Poly-L-lysinbürsten und ihrer linearen Analoga bestimmt werden. Mit diesen Resultaten war es in Kombination mit statischen Lichtstreuexperimenten möglich, die effektive Ladung von linearem und verzweigten Poly-L-lysin nach einer Theorie von Muthukumar zu berechnen. Das Ergebnis dieser Rechnungen bestätigt die Ergebnisse früherer Untersuchungen von Peter Dziezok, der in seiner Dissertation durch Leitfähigkeits und Lichtstreumessungen an linearem PVP und PVP-Bürsten herausfand, dass die effektive Ladung von Polymerbürsten mindestens um einen Faktor 10 kleiner ist als bei den korrespondierenden linearen Analoga.