979 resultados para retention rate
Resumo:
In this paper, we study the relationship between the failure rate and the mean residual life of doubly truncated random variables. Accordingly, we develop characterizations for exponential, Pareto 11 and beta distributions. Further, we generalize the identities for fire Pearson and the exponential family of distributions given respectively in Nair and Sankaran (1991) and Consul (1995). Applications of these measures in file context of lengthbiased models are also explored
Resumo:
In this paper, we examine the relationships between log odds rate and various reliability measures such as hazard rate and reversed hazard rate in the context of repairable systems. We also prove characterization theorems for some families of distributions viz. Burr, Pearson and log exponential models. We discuss the properties and applications of log odds rate in weighted models. Further we extend the concept to the bivariate set up and study its properties.
Resumo:
Effective solids-liquid separation is the basic concept of any wastewater treatment system. Biological treatment methods involve microorganisms for the treatment of wastewater. Conventional activated sludge process (ASP) poses the problem of poor settleability and hence require a large footprint. Biogranulation is an effective biotechnological process which can overcome the drawbacks of conventional ASP to a great extent. Aerobic granulation represents an innovative cell immobilization strategy in biological wastewater treatment. Aerobic granules are selfimmobilized microbial aggregates that are cultivated in sequencing batch reactors (SBRs). Aerobic granules have several advantages over conventional activated sludge flocs such as a dense and compact microbial structure, good settleability and high biomass retention. For cells in a culture to aggregate, a number of conditions have to be satisfied. Hence aerobic granulation is affected by many operating parameters. The organic loading rate (OLR) helps to enrich different bacterial species and to influence the size and settling ability of granules. Hence, OLR was argued as an influencing parameter by helping to enrich different bacterial species and to influence the size and settling ability of granules. Hydrodynamic shear force, caused by aeration and measured as superficial upflow air velocity (SUAV), has a strong influence and hence it is used to control the granulation process. Settling time (ST) and volume exchange ratio (VER) are also two key influencing factors, which can be considered as selection pressures responsible for aerobic granulation based on the concept of minimal settling velocity. Hence, these four parameters - OLR, SUAV, ST and VER- were selected as major influencing parametersfor the present study. Influence of these four parameters on aerobic granulation was investigated in this work
Resumo:
Solid waste generation is a natural consequence of human activity and is increasing along with population growth, urbanization and industrialization. Improper disposal of the huge amount of solid waste seriously affects the environment and contributes to climate change by the release of greenhouse gases. Practicing anaerobic digestion (AD) for the organic fraction of municipal solid waste (OFMSW) can reduce emissions to environment and thereby alleviate the environmental problems together with production of biogas, an energy source, and digestate, a soil amendment. The amenability of substrate for biogasification varies from substrate to substrate and different environmental and operating conditions such as pH, temperature, type and quality of substrate, mixing, retention time etc. Therefore, the purpose of this research work is to develop feasible semi-dry anaerobic digestion process for the treatment of OFMSW from Kerala, India for potential energy recovery and sustainable waste management. This study was carried out in three phases in order to reach the research purpose. In the first phase, batch study of anaerobic digestion of OFMSW was carried out for 100 days at 32°C (mesophilic digestion) for varying substrate concentrations. The aim of this study was to obtain the optimal conditions for biogas production using response surface methodology (RSM). The parameters studied were initial pH, substrate concentration and total organic carbon (TOC). The experimental results showed that the linear model terms of initial pH and substrate concentration and the quadratic model terms of the substrate concentration and TOC had significant individual effect (p < 0.05) on biogas yield. However, there was no interactive effect between these variables (p > 0.05). The optimum conditions for maximizing the biogas yield were a substrate concentration of 99 g/l, an initial pH of 6.5 and TOC of 20.32 g/l. AD of OFMSW with optimized substrate concentration of 99 g/l [Total Solid (TS)-10.5%] is a semi-dry digestion system .Under the optimized condition, the maximum biogas yield was 53.4 L/kg VS (volatile solid).. In the second phase, semi-dry anaerobic digestion of organic solid wastes was conducted for 45 days in a lab-scale batch experiment for substrate concentration of 100 g/l (TS-11.2%) for investigating the start-up performances under thermophilic condition (50°C). The performance of the reactor was evaluated by measuring the daily biogas production and calculating the degradation of total solids and the total volatile solids. The biogas yield at the end of the digestion was 52.9 L/kg VS for the substrate concentration of 100 g/l. About 66.7% of volatile solid degradation was obtained during the digestion. A first order model based on the availability of substrate as the limiting factor was used to perform the kinetic studies of batch anaerobic digestion system. The value of reaction rate constant, k, obtained was 0.0249 day-1. A laboratory bench scale reactor with a capacity of 36.8 litres was designed and fabricated to carry out the continuous anaerobic digestion of OFMSW in the third phase. The purpose of this study was to evaluate the performance of the digester at total solid concentration of 12% (semi-dry) under mesophlic condition (32°C). The digester was operated with different organic loading rates (OLRs) and constant retention time. The performance of the reactor was evaluated using parameters such as pH, volatile fatty acid (VFA), alkalinity, chemical oxygen demand (COD), TOC and ammonia-N as well as biogas yield. During the reactor’s start-up period, the process is stable and there is no inhibition occurred and the average biogas production was 14.7 L/day. The reactor was fed in continuous mode with different OLRs (3.1,4.2 and 5.65 kg VS/m3/d) at constant retention time of 30 days. The highest volatile solid degradation of 65.9%, with specific biogas production of 368 L/kg VS fed was achieved with OLR of 3.1 kg VS/m3/d. Modelling and simulation of anaerobic digestion of OFMSW in continuous operation is done using adapted Anaerobic Digestion Model No 1 (ADM1).The proposed model, which has 34 dynamic state variables, considers both biochemical and physicochemical processes and contains several inhibition factors including three gas components. The number of processes considered is 28. The model is implemented in Matlab® version 7.11.0.584(R2010b). The model based on adapted ADM1 was tested to simulate the behaviour of a bioreactor for the mesophilic anaerobic digestion of OFMSW at OLR of 3.1 kg VS/m3/d. ADM1 showed acceptable simulating results.
Resumo:
For millennia oasis agriculture has been the backbone of rural livelihood in the desertic Sultanate of Oman. However, little is known about the functioning of these oasis systems, in particular with respect to the C turnover. The objective was to determine the effects of crop, i.e. alfalfa, wheat and bare fallow on the CO2 evolution rate during an irrigation cycle in relation to changes in soil water content and soil temperature. The gravimetric soil water content decreased from initially 24% to approximately 16% within 7 days after irrigation. The mean CO2 evolution rates increased significantly in the order fallow (27.4 mg C m^−2 h^−1) < wheat (45.5 mg C m^−2 h^−1) < alfalfa (97.5 mg C m^−2 h^−1). It can be calculated from these data that the CO2 evolution rate of the alfalfa root system was nearly four times higher than the corresponding rate in the wheat root system. The decline in CO2 evolution rate, especially during the first 4 days after irrigation, was significantly related to the decline in the gravimetric water content, with r = 0.70. CO2 evolution rate and soil temperature at 5 cm depth were negatively correlated (r = -0.56,n = 261) due to increasing soil temperature with decreasing gravimetric water content.
Resumo:
Type and rate of fertilizers influence the level of soil organic carbon (Corg) and total nitrogen (Nt) markedly, but the effect on C and N partitioning into different pools is open to question. The objectives of the present work were to: (i) quantify the impact of fertilizer type and rate on labile, intermediate and passive C and N pools by using a combination of biological, chemical and mathematical methods; (ii) explain previously reported differences in the soil organic matter (SOM) levels between soils receiving farmyard manure with or without biodynamic preparations by using Corg time series and information on SOM partitioning; and (iii) quantify the long-term and short-term dynamics of SOM in density fractions and microbial biomass as affected by fertilizer type and rate and determine the incorporation of crop residues into labile SOM fractions. Samples were taken from a sandy Cambisol from the long-term fertilization trial in Darmstadt, Germany, founded in 1980. The nine treatments (four field replicates) were: straw incorporation plus application of mineral fertilizer (MSI) and application of rotted farmyard manure with (DYN) or without (FYM) addition of biodynamic preparations, each at high (140 – 150 kg N ha-1 year-1; MSIH, DYNH, FYMH), medium (100 kg N ha-1 year-1; MSIM, DYNM, FYMM) and low (50 – 60 kg N ha-1 year-1; MSIL, DYNL, FYML) rates. The main findings were: (i) The stocks of Corg (t ha-1) were affected by fertilizer type and rate and increased in the order MSIL (23.6), MSIM (23.7), MSIH (24.2) < FYML (25.3) < FYMM (28.1), FYMH (28.1). Stocks of Nt were affected in the same way (C/N ratio: 11). Storage of C and N in the modelled labile pools (turnover times: 462 and 153 days for C and N, respectively) were not influenced by the type of fertilizer (FYM and MSI) but depended significantly (p ≤ 0.05) on the application rate and ranged from 1.8 to 3.2 t C ha 1 (7 – 13% of Corg) and from 90 to 140 kg N ha-1 (4-5% of Nt). In the calculated intermediate pool (C/N ratio 7), stocks of C were markedly higher in FYM treatments (15-18 t ha-1) compared to MSI treatments (12-14 t ha-1). This showed that differences in SOM stocks in the sandy Cambisol induced by fertilizer rate may be short-lived in case of changing management, but differences induced by fertilizer type may persist for decades. (ii) Crop yields, estimated C inputs (1.5 t ha-1 year-1) with crop residue, microbial bio¬mass C (Cmic, 118 – 150 mg kg-1), microbial biomass N (17 – 20 mg kg-1) and labile C and N pools did not differ significantly between FYM and DYN treatments. However, labile C increased linearly with application rate (R2 = 0.53) from 7 to 11% of Corg. This also applied for labile N (3.5 to 4.9% of Nt). The higher contents of Corg in DYN treatments existed since 1982, when the first sampling was conducted for all individual treatments. Contents of Corg between DYN and FYM treatments con-verged slightly since then. Furthermore, at least 30% of the difference in Corg was located in the passive pool where a treatment effect could be excluded. Therefore, the reported differences in Corg contents existed most likely since the beginning of the experiment and, as a single factor of biodynamic agriculture, application of bio-dynamic preparations had no effect on SOM stocks. (iii) Stocks of SOM, light fraction organic C (LFOC, ρ ≤ 2.0 g cm-3), light fraction organic N and Cmic decreased in the order FYMH > FYML > MSIH, MSIL for all sampling dates in 2008 (March, May, September, December). However, statistical significance of treatment effects differed between the dates, probably due to dif-ferences in the spatial variation throughout the year. The high proportion of LFOC on total Corg stocks (45 – 55%) highlighted the importance of selective preservation of OM as a stabilization mechanism in this sandy Cambisol. The apparent turnover time of LFOC was between 21 and 32 years, which agreed very well with studies with substantially longer vegetation change compared to our study. Overall, both approaches; (I) the combination of incubation, chemical fractionation and simple modelling and (II) the density fractionation; provided complementary information on the partitioning of SOM into pools of different stability. The density fractionation showed that differences in Corg stocks between FYM and MSI treatments were mainly located in the light fraction, i.e. induced by higher recalcitrance of the organic input in the FYM treatments. Moreover, the use of the combination of biological, chemical and mathematical methods indicated that effects of fertilizer rate on total Corg and Nt stocks may be short-lived, but that the effect of fertilizer type may persist for longer time spans in the sandy Cambisol.
Resumo:
In the course of the ‘Livestock Revolution’, extension and intensification of, among others, ruminant livestock production systems are current phenomena, with all their positive and negative side effects. Manure, one of the inevitable secondary products of livestock rearing, is a valuable source of plant nutrients and its skillful recycling to the soil-plant interface is essential for soil fertility, nutrient - and especially phosphorus - uses efficiency and the preservation or re-establishment of environmentally sustainable farming systems, for which organic farming systems are exemplarily. Against this background, the PhD research project presented here, which was embedded in the DFG-funded Research Training Group 1397 ‘Regulation of soil organic matter and nutrient turnover in organic agriculture ’ investigated possibilities to manipulate the diets of water buffalo (Bubalus bubalis L.) so as to produce manure of desired quality for organic vegetable production, without affecting the productivity of the animals used. Consisting of two major parts, the first study (chapter 2) tested the effects of diets differing in their ratios of carbon (C) to nitrogen (N) and of structural to non-structural carbohydrates on the quality of buffalo manure under subtropical conditions in Sohar, Sultanate of Oman. To this end, two trials were conducted with twelve water buffalo heifers each, using a full Latin Square design. One control and four tests diets were examined during three subsequent 7 day experimental periods preceded each by 21 days adaptation. Diets consisted of varying proportions of Rhodes grass hay, soybean meal, wheat bran, maize, dates, and a commercial concentrate to achieve a (1) high C/N and high NDF (neutral detergent fibre)/SC (soluble carbohydrate) ratio (HH), (2) low C/N and low NDF/SC ratio (LL); (3) high C/N and low NDF/SC ratio (HL) and (4) low C/N and high NDF/SC (LH) ratio. Effects of these diets, which were offered at 1.45 times maintenance requirements of metabolizable energy, and of individual diet characteristics, respectively, on the amount and quality of faeces excreted were determined and statistically analysed. The faeces produced from diets HH and LL were further tested in a companion PhD study (Mr. K. Siegfried) concerning their nutrient release in field experiments with radish and cabbage. The second study (chapter 3) focused on the effects of the above-described experimental diets on the rate of passage of feed particles through the gastrointestinal tract of four randomly chosen animals per treatment. To this end, an oral pulse dose of 683 mg fibre particles per kg live weight marked with Ytterbium (Yb; 14.5 mg Yb g-1 organic matter) was dosed at the start of the 7 day experimental period which followed 21 days of adaptation. During the first two days a sample for Yb determination was kept from each faecal excretion, during days 3 – 7 faecal samples were kept from the first morning and the first evening defecation only. Particle passage was modelled using a one-compartment age-dependent Gamma-2 model. In both studies individual feed intake and faecal excretion were quantified throughout the experimental periods and representative samples of feeds and faeces were subjected to proximate analysis following standard protocols. In the first study the organic matter (OM) intake and excretion of LL and LH buffaloes were significantly lower than of HH and HL animals, respectively. Digestibility of N was highest in LH (88%) and lowest in HH (74%). While NDF digestibility was also highest in LH (85%) it was lowest in LL (78%). Faecal N concentration was positively correlated (P≤0.001) with N intake, and was significantly higher in faeces excreted by LL than by HH animals. Concentrations of fibre and starch in faecal OM were positively affected by the respective dietary concentrations, with NDF being highest in HH (77%) and lowest in LL (63%). The faecal C/N ratio was positively related (P≤0.001) to NDF intake; C/N ratios were 12 and 7 for HH and LL (P≤0.001), while values for HL and LH were 11.5 and 10.6 (P>0.05). The results from the second study showed that dietary N concentration was positively affecting faecal N concentration (P≤0.001), while there was a negative correlation with the faecal concentration of NDF (P≤0.05) and the faecal ratios of NDF/N and C/N (P≤0.001). Particle passage through the mixing compartment was lower (P≤0.05) for HL (0.033 h-1) than for LL (0.043 h-1) animals, while values of 0.034 h-1 and 0.038 h-1 were obtained for groups LH and HH. At 55.4 h, total tract mean retention time was significantly (P≤0.05) lower in group LL that in all other groups where these values varied between 71 h (HH) and 79 h (HL); this was probably due to the high dietary N concentration of diet LL which was negatively correlated with time of first marker appearance in faeces (r= 0.84, P≤0.001), while the dietary C concentration was negatively correlated with particle passage through the mixing compartment (r= 0.57, P≤0.05). The results suggest that manure quality of river buffalo heifers can be considerably influenced by diet composition. Despite the reportedly high fibre digestion capacity of buffalo, digestive processes did not suppress the expression of diet characteristics in the faeces. This is important when aiming at producing a specific manure quality for fertilization purposes in (organic) crop cultivation. Although there was a strong correlation between the ingestion and the faecal excretion of nitrogen, the correlation between diet and faecal C/N ratio was weak. To impact on manure mineralization, the dietary NDF and N concentrations seem to be the key control points, but modulating effects are achieved by the inclusion of starch into the diet. Within the boundaries defined by the animals’ metabolic and (re)productive requirements for energy and nutrients, diet formulation may thus take into account the abiotically and biotically determined manure turnover processes in the soil and the nutrient requirements of the crops to which the manure is applied, so as to increase nutrient use efficiency along the continuum of the feed, the animal, the soil and the crop in (organic) farming systems.
Resumo:
This research quantitatively evaluates the water retention capacity and flood control function of the forest catchments by using hydrological data of the large flood events which happened after the serious droughts. The objective sites are the Oodo Dam and the Sameura Dam catchments in Japan. The kinematic wave model, which considers saturated and unsaturated sub-surface soil zones, is used for the rainfall-runoff analysis. The result shows that possible storage volume of the Oodo Dam catchment is 162.26 MCM in 2005, while that of Samerua is 102.83 MCM in 2005 and 102.64 MCM in 2007. Flood control function of the Oodo Dam catchment is 173 mm in water depth in 2005, while the Sameura Dam catchment 114 mm in 2005 and 126 mm in 2007. This indicates that the Oodo Dam catchment has more than twice as big water capacity as its capacity (78.4 mm), while the Sameura Dam catchment has about one-fifth of the its storage capacity (693 mm).
Resumo:
Synechocystis PCC 6803 is a photosynthetic bacterium that has the potential to make bioproducts from carbon dioxide and light. Biochemical production from photosynthetic organisms is attractive because it replaces the typical bioprocessing steps of crop growth, milling, and fermentation, with a one-step photosynthetic process. However, low yields and slow growth rates limit the economic potential of such endeavors. Rational metabolic engineering methods are hindered by limited cellular knowledge and inadequate models of Synechocystis. Instead, inverse metabolic engineering, a scheme based on combinatorial gene searches which does not require detailed cellular models, but can exploit sequence data and existing molecular biological techniques, was used to find genes that (1) improve the production of the biopolymer poly-3-hydroxybutyrate (PHB) and (2) increase the growth rate. A fluorescence activated cell sorting assay was developed to screen for high PHB producing clones. Separately, serial sub-culturing was used to select clones that improve growth rate. Novel gene knock-outs were identified that increase PHB production and others that increase the specific growth rate. These improvements make this system more attractive for industrial use and demonstrate the power of inverse metabolic engineering to identify novel phenotype-associated genes in poorly understood systems.
Resumo:
Resumen tomado de la publicaci??n
Resumo:
Speaker: Lynda Hardman Organiser: Time: 04/02/2015 12:30-13:30 Location: B32/3077 Abstract The challenges of addressing gender inequalities in science, technology, engineering, mathematics and medicine is widely acknowledged. We currently hold a bronze award and ECS is one of many academic units in the University which has gained Athena Swan Charter status. In this seminar, Professor Lynda Hardman, Chair of the Informatics Europe working group "Women in Informatics Research and Education” will be explaining the causes of issued underlying gender inequality and constructive routes to addressing this important agenda. In undertaking to commit to an action plan which is a prerequisite of gaining charter status, the University or academic department agreed to accept and incorporate the Athena Swan six principles listed below: * To address gender inequalities requires commitment and action from everyone, at all levels of the organisation * To tackle the unequal representation of women in science requires changing cultures and attitudes across the organisation * The absence of diversity at management and policy-making levels has broad implications which the organisation will examine * The high loss rate of women in science is an urgent concern which the organisation will address * The system of short-term contracts has particularly negative consequences for the retention and progression of women in science, which the organisation recognises * There are both personal and structural obstacles to women making the transition from PhD into a sustainable academic career in science, which require the active consideration of the organisation. This seminar is designed to provide an opportunity to explore these issues NOTE: Lynda will be basing here talk on some of the work she directed as chair of the "Women in Informatics Research and Education” working group. The purpose of the working group is to actively participate and promote actions that contribute to improve gender balance in Information and Communication Sciences and Technologies. The first concrete result of the working group's activities was the publication of the booklet "More Women in Informatics Research and Education" in 2013. The booklet is a compact source of clear and simple best practices to deans and heads of departments that aim to increase the participation of women as both students and employees in their institutions. Many tips included were also inspired by colleagues already in leading positions who have already implemented actions in their institutions to attract more women and ensure their continued participation in the organization at commensurate ratios with their male colleagues. The booklet is endorsed by the European Commission and features a foreword by Neelie Kroes, Vice-President of the European Commission, responsible for the Digital Agenda.
Resumo:
Since 1991 Colombia has had a market-determined Peso - US Dollar Nominal Exchange Rate (NER), after more than 20 years of controlled and multiple exchange rates. The behavior (revaluation / devaluation) of the NER is constantly reported in news, editorials and op-eds of major newspapers of the nation with particular attention to revaluation. The uneven reporting of revaluation episodes can be explained by the existence of an interest group particulary affected by revaluation, looking to increase awareness and sympathy for help from public institutions. Using the number of news and op-eds from a major Colombian newspaper, it is shown that there is an over-reporting of revaluation episodes in contrast to devaluation ones. Secondly, using text analysis upon the content of the news, it is also shown that the words devaluation and revaluation are far apart in the distribution of words within the news; and revaluation is highly correlated with words related to: public institutions, exporters and the need of assistance. Finally it is also shown that the probability of the central bank buying US dollars to lessen revaluation effects increases with the number of news; even though the central bank allegedly intervenes in the exchange rate market only to tame volatility or accumulate international reserves.
Resumo:
In order to present an estimation of the Internal Rate of Return (IRR) to higher education in Colombia we take advantage of the methodological approach provided by Heckman, Lochner and Todd (2005). Trying to overcome the criticism that surrounds interpretations of the education coefficient of Mincer equations as being the rate of return to investments in education we develop a more structured approach of estimation, which controls for selection bias, includes more accurate measures of labor income and the role of education costs and income taxes. Our results implied a lower rate of return than the ones found in the Colombian literature and show that the Internal Rate of Return for higher education in Colombia lies somewhere between 0.074 and 0.128. The results vary according to the year analyzed and individual’s gender. This last result reinforces considerations regarding gender discrimination in the Colombian labor market.
Resumo:
Este artículo analiza el efecto sistemático de la volatilidad de la tasa de cambio, cuando un gobierno local debe evaluar políticas comerciales estratégicas lineales y cuadráticas. Este ejercicio se realiza para modelos de mercado Cournot y Bertran. El modelo prueba que tanto el esquema lineal como el cuadrático tienen el mismo efecto sobre el bienestar social de los países, y que la volatilidad de la tasa de cambio domestica lleva a los gobiernos a reducir los subsidios a las exportaciones o bajan los impuestos a las exportaciones, de acuerdo a la variable estratégica elegida por las firmas. La tasa de cambio extranjera tiene diferentes efectos dependiendo de si las firmas producen bajos rendimientos a escalas constantes o decrecientes.