995 resultados para pressure vessels


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The three-stage low-pressure model steam turbine at the Institute of Thermal Turbomachinery and Machinery Laboratory (ITSM) was used to study the impact of three different steam inlet temperatures on the homogeneous condensation process and the resulting wetness topology. The droplet spectrum as well as the particle number concentration were measured in front of the last stage using an optical-pneumatic probe. At design load, condensation starts inside the stator of the second stage. A change in the steam inlet temperature is able to shift the location of condensation onset within the blade row up- or downstream and even into adjoining blade passages, which leads to significantly different local droplet sizes and wetness fractions due to different local expansion rates. The measured results are compared to steady three-dimensional computational fluid dynamics calculations. The predicted nucleation zones could be largely confirmed by the measurements. Although the trend of measured and calculated droplet size across the span is satisfactory, there are considerable differences between the measured and computed droplet spectrum and wetness fractions. © IMechE 2013 Reprints and permissions: sagepub.co.uk/ journalsPermissions.nav.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Under a high-pressure mercury lamp (HPML) and using an exposure time of 4 h, the photoproduction of hydroxyl radicals ((OH)-O-.) could be induced in an aqueous solution containing humic acid (HA). Hydroxyl radicals were determined by high-performance liquid chromatography using benzene as a probe. The results showed that (OH)-O-. photoproduction increased from 1.80 to 2.74 muM by increasing the HA concentration from 10 to 40 mg L-1 at an exposure time of 4 h (pH 6.5). Hydroxyl radical photoproduction in aqueous solutions of HA containing algae was greater than that in the aqueous solutions of HA without algae. The photoproduction of (OH)-O-. in the HA solution with Fe(111) was greater than that of the solution without Fe(III) at pH ranging from 4.0 to 8.0. The photoproduction of (OH)-O-. in HA solution with algae with or without Fe(111) under a 250 W HPML was greater than that under a 125 W HPML. The photoproduction of (OH)-O-. in irradiated samples was influenced by the pH. The results showed that HPML exposure for 4 h in the 4-8 pH range led to the highest (OH)-O-. photoproduction at pH 4.0.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechanical properties, electronic structure and phonon dispersion of ground state ThO2 as well as the structure behavior up to 240 GPa are studied using first-principles density-functional theory. Our calculated elastic constants indicate that both the ground-state fluorite structure and high pressure cotunnite structure of ThO2 are mechanically stable. The bulk modulus, shear modulus, and Young's modulus of cotunnite ThO2 are all smaller by approximately 25% compared with those of fluorite ThO2. The Poisson's ratios of both structures are approximately equal to 0.3 and the hardness of fluorite ThO2 is 22.4 GPa. The electronic structure and bonding nature of fluorite ThO2 are fully analyzed, and show that the Th-O bond displays a mixed ionic/covalent character. The phase transition from the fluorite to cotunnite structure is calculated to occur at the pressure of 26.5 GPa, consistent with recent experimental measurement by ldiri et al. [1]. For the cotunnite phase it is further predicted that an isostructural transition takes place in the pressure region of 80-130 GPa.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The luminescence from Eu2+ ions in MF2 (M = Ca, Sr, Ba) fluorides has been investigated under the pressure range of 0-8 GPa. The emission band originating from the 4f(6)5d(1) -> 4f(7) transition of Eu2+ ions in CaF2 and SrF2 shows the red-shift as increasing pressure with pressure coefficients of -17 meV/GPa for CaF2 and -18 meV/GPa for SrF2. At atmospheric pressure, the emission spectrum of BaF2:Eu2+ comprises two peaks at 2.20 and 2.75 eV from the impurity trapped exciton (ITE) and the self-trapped exciton (STE), respectively. As the pressure is increased, both emission peaks shift to higher energies, and the shifting rate is slowed by the phase transition from the cubic to orthorhombic phase at 4 GPa. Due to the phase transition at 4-5 GPa pressure, the ITE emission disappears gradually, and the STE emission is gradually replaced by the 4f(6)5d(1) -> 4f(7) transition of Eu2+. Above 5 GPa, the pressure behavior of the 4f(6)5d(1) -> 4f(7) transition of EU2+ in BaF2: EU2+ is the same as the normal emission of Eu2+ in CaF2 and SrF2 phosphors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ZnO films are prepared on glass substrates by pulsed laser deposition (PLD) at different oxygen pressures, and the effects of oxygen pressure on the structure and optoelectrical properties of as-grown ZnO films are investigated. The results show that the crystallite size and surface roughness of the films increase, but the carrier concentration and optical energy gap E-g decrease with increasing oxygen pressure. Only UV emission is found in the photoluminescence (PL) spectra of all the samples, and its intensity increases with oxygen pressure. Furthermore, there are marked differences in structure and properties between the films grown at low oxygen pressures (0.003 and 0.2 Pa) and the films grown at high oxygen pressures (24 and 150 Pa), which is confirmed by the fact that the crystallite size and UV emission intensity markedly increase, but the carrier concentration markedly decreases as oxygen pressure increases from 0.2 to 24 Pa. These results show that the crystal quality, including the microstructural quality and stoichiometry proportion, of the prepared ZnO films improves as oxygen pressure increases, particularly from 0.2 to 24 Pa.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel fiber Bragg grating (FBG) pressure sensor with the enhanced sensitivity has been demonstrated. A piston-like diaphragm with a hard core in the center is used to enhance the sensitivity. Both the theoretical analysis and the experimental result show that the radius of the hard core has significant effect on the pressure sensitivity. When the radius of the hard core is 1.5 mm, a pressure sensitivity of 7.23 nm/MPa has been achieved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydrogenated microcrystalline silicon (mu c-Si:H) thin films were prepared by high-pressure radio-frequency (13.56 MHz) plasma enhanced chemical vapor deposition (rf-PECVD) with a screened plasma. The deposition rate and crystallinity varying with the deposition pressure, rf power, hydrogen dilution ratio and electrodes distance were systematically studied. By optimizing the deposition parameters the device quality mu c-Si:H films have been achieved with a high deposition rate of 7.8 angstrom/s at a high pressure. The V-oc of 560 mV and the FF of 0.70 have been achieved for a single-junction mu c-Si:H p-i-n solar cell at a deposition rate of 7.8 angstrom/s.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ZnO films were grown at low pressure in a vertical metal-organic vapor deposition (MOCVD) reactor with a rotating disk. The structural and morphological properties of the ZnO films grown at different disk rotation rate (DRR) were investigated. The growth rate increases with the increase of DRR. The ZnO film grown at the DRR of 450 revolutions per minute (rpm) has the lowest X-ray rocking curve full width at half maximum and shows the best crystalline quality and morphology. In addition, the crystalline quality and morphology are improved as the DRR increased but both are degraded when the DRR is higher than 450 rpm. These results can help improve in understanding the rotation effects on the ZnO films grown by MOCVD. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A fiber Bragg grating (FBG) pressure sensor packaged by using a hard core in the membrane is presented. By utilizing the unique membrane-based FBG packagine method, its pressure sensitivity has been effectively enhanced. The pressure sensitivity of the FBG reaches 5.75 X 10(-3)/MPa within the pressure range of 0.0.16 Mpa. (C) 2009 Wiley Periodicals, Inc. Microwave Opt Technol Lett 51 1279-1281, 2009; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/mop.24335

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A fiber Bragg grating (FBG) pressure sensing scheme based on a flat diaphragm and an L-shaped lever is presented. An L-shaped lever transfers the pressure-induced defection of the flat diaphragm to the axial elongation of the FBG. The curve where the L-shaped lever contacts the diaphragm is a segment of an Archimedes spiral, which is used to enhance the responsivity. Because the thermal expansion coefficient of the quartz-glass L-shaped lever and the steel sensor shell is different, the temperature effect is compensated for by optimizing the dimension parameters. Theoretical analysis is presented, and the experimental results show that an ultrahigh pressure responsivity of 244 pm/kPa and a low temperature responsivity of 2.8 pm/degrees C are achieved. (c) 2009 Society of Photo-Optical Instrumentation Engineers. [DOI 10.1117/1.3081058]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel fiber Bragg grating (FBG) pressure sensor based on the double shell cylinder with temperature compensation is presented. in the sensing scheme, a sensing FBG is affixed in the tangential direction on the outer surface of the inner cylinder, and another FBG is affixed in the axial direction to compensate the temperature fluctuation. Based on the theory of elasticity, the theoretical analysis of the strain distribution of the sensing shell is presented. Experiments are carried out to test the performance of the sensor. A pressure sensitivity of 0.0937 nm/MPa has been achieved. The experimental results also demonstrate that the two FBGs have the same temperature sensitivity, which can be utilized to compensate the temperature induced wavelength shift during the pressure measurement. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Photoluminescence of GaAs0.973Sb0.022N0.005 is investigated at different temperatures and pressures. Both the alloy band edge and the N-related emissions, which show different temperature and pressure dependences, are observed. The pressure coefficients obtained in the pressure range 0-1.4GPa for the band edge and N-related emissions are 67 and 45 meV/GPa, respectively. The N-related emissions shift to a higher energy in the lower pressure range and then begin to redshift at about 8.5 GPa. This redshift is possibly caused by the increase of the X-valley component in the N-related states with increasing pressure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The photoluminescence of four epitaxial ZnS: Te samples with Te concentration from 0.5% to 3.1% was investigated at different temperature and ambient pressure. Two well-known emission bands related to the isolated Te-1 and Te-2 pair isoelectronic centers were observed for the samples with Te concentrations of 0.5% and 0.65%. For the samples with Te concentrations of 1.4% and 3.1%, only was the Te-2-related peak observed. The pressure behaviors of these emission bands, were studied at 15 K. The Te-1 -related band has faster pressure shift to higher energy than ZnS band gap. On the other hand, the pressure coefficient of Te-2 -related bands is smaller than that of the ZnS band gap. According to a Koster-Slater model, we found that the increase of the density bandwidth of the valence band with pressure is the main reason for the faster shift of the Te-1 centers, while the relatively large difference in the pressure behavior of the Te-1 and Te-2 centers is mainly due to the difference in the pressure-induced enhancement of the impurity potential on Te-1 and Te-2 centers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In-situ energy dispersive x-ray diffraction on ZnS nanocrystalline was carried out under high pressure by using a diamond anvil cell. Phase transition of wurtzite of 10 nm ZnS to rocksalt occurred at 16.0 GPa, which was higher than that of the bulk materials. The structures of ZnS nanocrystalline at different pressures were built by using materials studio and the bulk modulus, and the pressure derivative of ZnS nanocrystalline were derived by fitting the equation of Birch-Murnaghan. The resulting modulus was higher than that of the corresponding bulk material, which indicates that the nanomaterial has higher hardness than its bulk materials.