939 resultados para parameter driven model
Resumo:
In this article, we present the EM-algorithm for performing maximum likelihood estimation of an asymmetric linear calibration model with the assumption of skew-normally distributed error. A simulation study is conducted for evaluating the performance of the calibration estimator with interpolation and extrapolation situations. As one application in a real data set, we fitted the model studied in a dimensional measurement method used for calculating the testicular volume through a caliper and its calibration by using ultrasonography as the standard method. By applying this methodology, we do not need to transform the variables to have symmetrical errors. Another interesting aspect of the approach is that the developed transformation to make the information matrix nonsingular, when the skewness parameter is near zero, leaves the parameter of interest unchanged. Model fitting is implemented and the best choice between the usual calibration model and the model proposed in this article was evaluated by developing the Akaike information criterion, Schwarz`s Bayesian information criterion and Hannan-Quinn criterion.
Resumo:
We have considered a Bayesian approach for the nonlinear regression model by replacing the normal distribution on the error term by some skewed distributions, which account for both skewness and heavy tails or skewness alone. The type of data considered in this paper concerns repeated measurements taken in time on a set of individuals. Such multiple observations on the same individual generally produce serially correlated outcomes. Thus, additionally, our model does allow for a correlation between observations made from the same individual. We have illustrated the procedure using a data set to study the growth curves of a clinic measurement of a group of pregnant women from an obstetrics clinic in Santiago, Chile. Parameter estimation and prediction were carried out using appropriate posterior simulation schemes based in Markov Chain Monte Carlo methods. Besides the deviance information criterion (DIC) and the conditional predictive ordinate (CPO), we suggest the use of proper scoring rules based on the posterior predictive distribution for comparing models. For our data set, all these criteria chose the skew-t model as the best model for the errors. These DIC and CPO criteria are also validated, for the model proposed here, through a simulation study. As a conclusion of this study, the DIC criterion is not trustful for this kind of complex model.
Resumo:
We consider the time evolution of an exactly solvable cellular automaton with random initial conditions both in the large-scale hydrodynamic limit and on the microscopic level. This model is a version of the totally asymmetric simple exclusion process with sublattice parallel update and thus may serve as a model for studying traffic jams in systems of self-driven particles. We study the emergence of shocks from the microscopic dynamics of the model. In particular, we introduce shock measures whose time evolution we can compute explicitly, both in the thermodynamic limit and for open boundaries where a boundary-induced phase transition driven by the motion of a shock occurs. The motion of the shock, which results from the collective dynamics of the exclusion particles, is a random walk with an internal degree of freedom that determines the jump direction. This type of hopping dynamics is reminiscent of some transport phenomena in biological systems.
Resumo:
The Grubbs` measurement model is frequently used to compare several measuring devices. It is common to assume that the random terms have a normal distribution. However, such assumption makes the inference vulnerable to outlying observations, whereas scale mixtures of normal distributions have been an interesting alternative to produce robust estimates, keeping the elegancy and simplicity of the maximum likelihood theory. The aim of this paper is to develop an EM-type algorithm for the parameter estimation, and to use the local influence method to assess the robustness aspects of these parameter estimates under some usual perturbation schemes, In order to identify outliers and to criticize the model building we use the local influence procedure in a Study to compare the precision of several thermocouples. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The main objective of this paper is to study a logarithm extension of the bimodal skew normal model introduced by Elal-Olivero et al. [1]. The model can then be seen as an alternative to the log-normal model typically used for fitting positive data. We study some basic properties such as the distribution function and moments, and discuss maximum likelihood for parameter estimation. We report results of an application to a real data set related to nickel concentration in soil samples. Model fitting comparison with several alternative models indicates that the model proposed presents the best fit and so it can be quite useful in real applications for chemical data on substance concentration. Copyright (C) 2011 John Wiley & Sons, Ltd.
Resumo:
We study a long-range percolation model whose dynamics describe the spreading of an infection on an infinite graph. We obtain a sufficient condition for phase transition and prove all upper bound for the critical parameter of spherically symmetric trees. (C) 2008 Elsevier B.V. All rights reserved.
Methodology for identifying parameters for the TRNSYS model Type 210 -wood pellet stoves and boilers
Resumo:
This report describes a method how to perform measurements on boilers and stoves and how to identify parameters from the measurements for the boiler/stove-model TRNSYS Type 210. The model can be used for detailed annual system simulations using TRNSYS. Experience from measurements on three different pellet stoves and four boilers were used to develop this methodology. Recommendations for the set up of measurements are given and the re-quired combustion theory for the data evaluation and data preparation are given. The data evalua-tion showed that the uncertainties are quite large for the measured flue gas flow rate and for boilers and stoves with high fraction of energy going to the water jacket also the calculated heat rate to the room may have large uncertainties. A methodology for the parameter identification process and identified parameters for two different stoves and three boilers are given. Finally the identified models are compared with measured data showing that the model generally agreed well with meas-ured data during both stationary and dynamic conditions.
Resumo:
Objective Levodopa in presence of decarboxylase inhibitors is following two-compartment kinetics and its effect is typically modelled using sigmoid Emax models. Pharmacokinetic modelling of the absorption phase of oral distributions is problematic because of irregular gastric emptying. The purpose of this work was to identify and estimate a population pharmacokinetic- pharmacodynamic model for duodenal infusion of levodopa/carbidopa (Duodopa®) that can be used for in numero simulation of treatment strategies. Methods The modelling involved pooling data from two studies and fixing some parameters to values found in literature (Chan et al. J Pharmacokinet Pharmacodyn. 2005 Aug;32(3-4):307-31). The first study involved 12 patients on 3 occasions and is described in Nyholm et al. Clinical Neuropharmacology 2003:26:156-63. The second study, PEDAL, involved 3 patients on 2 occasions. A bolus dose (normal morning dose plus 50%) was given after a washout during night. Plasma samples and motor ratings (clinical assessment of motor function from video recordings on a treatment response scale between -3 and 3, where -3 represents severe parkinsonism and 3 represents severe dyskinesia.) were repeatedly collected until the clinical effect was back at baseline. At this point, the usual infusion rate was started and sampling continued for another two hours. Different structural absorption models and effect models were evaluated using the value of the objective function in the NONMEM package. Population mean parameter values, standard error of estimates (SE) and if possible, interindividual/interoccasion variability (IIV/IOV) were estimated. Results Our results indicate that Duodopa absorption can be modelled with an absorption compartment with an added bioavailability fraction and a lag time. The most successful effect model was of sigmoid Emax type with a steep Hill coefficient and an effect compartment delay. Estimated parameter values are presented in the table. Conclusions The absorption and effect models were reasonably successful in fitting observed data and can be used in simulation experiments.
Resumo:
Vehicle activated signs (VAS) display a warning message when drivers exceed a particular threshold. VAS are often installed on local roads to display a warning message depending on the speed of the approaching vehicles. VAS are usually powered by electricity; however, battery and solar powered VAS are also commonplace. This thesis investigated devel-opment of an automatic trigger speed of vehicle activated signs in order to influence driver behaviour, the effect of which has been measured in terms of reduced mean speed and low standard deviation. A comprehen-sive understanding of the effectiveness of the trigger speed of the VAS on driver behaviour was established by systematically collecting data. Specif-ically, data on time of day, speed, length and direction of the vehicle have been collected for the purpose, using Doppler radar installed at the road. A data driven calibration method for the radar used in the experiment has also been developed and evaluated. Results indicate that trigger speed of the VAS had variable effect on driv-ers’ speed at different sites and at different times of the day. It is evident that the optimal trigger speed should be set near the 85th percentile speed, to be able to lower the standard deviation. In the case of battery and solar powered VAS, trigger speeds between the 50th and 85th per-centile offered the best compromise between safety and power consump-tion. Results also indicate that different classes of vehicles report differ-ences in mean speed and standard deviation; on a highway, the mean speed of cars differs slightly from the mean speed of trucks, whereas a significant difference was observed between the classes of vehicles on lo-cal roads. A differential trigger speed was therefore investigated for the sake of completion. A data driven approach using Random forest was found to be appropriate in predicting trigger speeds respective to types of vehicles and traffic conditions. The fact that the predicted trigger speed was found to be consistently around the 85th percentile speed justifies the choice of the automatic model.