984 resultados para medium state
Resumo:
Transitions from the low-to the high-spin state in Fe2+ and Co3+ compounds have been examined by X-ray and UV photoelectron spectroscopy. It has been shown that the core-level bands in XPES, in particular the metal 3s band, as well as the valence bands, are diagnosis in the study of spin-state transitions.
Resumo:
The model for spin-state transitions described by Bari and Sivardiere (1972) is static and can be solved exactly even when the dynamics of the lattice are included; the dynamic model does not, however, show any phase transition. A coupling between the octahedra, on the other hand, leads to a phase transition in the dynamical two-sublattice displacement model. A coupling of the spin states to the cube of the sublattice displacement leads to a first-order phase transition. The most reasonable model appears to be a two-phonon model in which an ion-cage mode mixes the spin states, while a breathing mode couples to the spin states without mixing. This model explains the non-zero population of high-spin states at low temperatures, temperature-dependent variations in the inverse susceptibility and the spin-state population ratio, as well as the structural phase transitions accompanying spin-state transitions found in some systems.
Resumo:
The majority of Internet traffic use Transmission Control Protocol (TCP) as the transport level protocol. It provides a reliable ordered byte stream for the applications. However, applications such as live video streaming place an emphasis on timeliness over reliability. Also a smooth sending rate can be desirable over sharp changes in the sending rate. For these applications TCP is not necessarily suitable. Rate control attempts to address the demands of these applications. An important design feature in all rate control mechanisms is TCP friendliness. We should not negatively impact TCP performance since it is still the dominant protocol. Rate Control mechanisms are classified into two different mechanisms: window-based mechanisms and rate-based mechanisms. Window-based mechanisms increase their sending rate after a successful transfer of a window of packets similar to TCP. They typically decrease their sending rate sharply after a packet loss. Rate-based solutions control their sending rate in some other way. A large subset of rate-based solutions are called equation-based solutions. Equation-based solutions have a control equation which provides an allowed sending rate. Typically these rate-based solutions react slower to both packet losses and increases in available bandwidth making their sending rate smoother than that of window-based solutions. This report contains a survey of rate control mechanisms and a discussion of their relative strengths and weaknesses. A section is dedicated to a discussion on the enhancements in wireless environments. Another topic in the report is bandwidth estimation. Bandwidth estimation is divided into capacity estimation and available bandwidth estimation. We describe techniques that enable the calculation of a fair sending rate that can be used to create novel rate control mechanisms.
Resumo:
The problem of non-destructive determination of the state-of-charge of zinc- and magnesium-manganese dioxide dry batteries is examined experimentally from the viewpoint of internal impedance and open-circuit voltage at equilibrium. It is shown that the impedance is mainly charge-transfer controlled at relatively high states-of-charge and progressively changes over to diffusion control as the state-of-charge decreases in the case of zinc-manganese dioxide dry batteries. On the other hand, the impedance is mainly diffusion controlled for undischarged batteries but becomes charge-transfer controlled as soon as there is some discharge in the case of magnesium-manganese dioxide batteries. It is concluded that the determination of state-of-charge is not possible for both types of batteries by the measurement of impedance parameters due to film-induced fluctuations of these parameters. The measurement of open-circuit voltage at equilibrium can be used as a state-of-charge indicator for Zn-MnO2 batteries but not for Mg-MnO2 batteries.
Resumo:
The determination of the state-of-charge of the lead-acid battery has been examined from the viewpoint of internal impedance. It is shown that the impedance is controlled by charge transfer and to a smaller extent by diffusion processes in the frequency range 15–100 Hz. The equivalent series/parallel capacitance as well as the a.c. phase-shift show a parabolic dependence upon the state-of-charge, with a maximum or minimum at 50% charge. These results are explained on the basis of a uniform transmission-line analog equivalent circuit for the battery electrodes.
Resumo:
The simple two dimensional C-13-satellite J/D-resolved experiments have been proposed for the visualization of enantiomers, extraction of homo- and hetero-nuclear residual dipolar couplings and also H-1 chemical shift differences between the enantiomers in the anisotropic medium. The significant advantages of the techniques are in the determination of scalar couplings of bigger organic molecules. The scalar couplings specific to a second abundant spin such as F-19 can be selectively extracted from the severely overlapped spectrum. The methodologies are demonstrated on a chiral molecule aligned in the chiral liquid crystal medium and two different organic molecules in the isotropic solutions. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The problem of nondestructive determination of the state-of-charge of nickel-cadmium batteries has been examined experimentally as well as theoretically from the viewpoint of internal impedance. It is shown that the modulus of the impedance is mainly controlled by diffusion at all states of charge. Even so, a prediction of the state of charge is possible if the equivalent series/parallel capacitance or the alternating current phase shift is measured at a sufficiently low a.c. test frequency (5–30 Hz) which also avoids inductive effects. These results are explained on the basis of a uniform transmission-line analog equivalent circuit for the battery electrodes.
Resumo:
In this paper time-resolved resonance Raman (TR3) spectra of intermediates generated by proton induced electron-transfer reaction between triplet 2-methoxynaphthalene ((ROMe)-R-3) and decafluorobenzophenone (DFBP) are presented The TR3 vibrational spectra and structure of 2-methoxynaphthalene cation radical (ROMe+) have been analyzed by density functional theory (DFT) calculation It is observed that the structure of naphthalene ring of ROMe+ deviates from the structure of cation radical of naphthalene
Tiedostumaton nykytaiteessa : Katse, ääni ja aika vuosituhannen taitteen suomalaisessa nykytaiteessa
Resumo:
Leevi Haapala explores moving image works, sculptures and installations from a psychoanalytic perspective in his study The Unconscious in Contemporary Art. The Gaze, Voice and Time in Finnish Contemporary Art at the Turn of the Millennium . The artists included in the study are Eija-Liisa Ahtila, Hans-Christian Berg, Markus Copper, Liisa Lounila and Salla Tykkä. The theoretical framework includes different psychoanalytic readings of the concepts of the gaze, voice and temporality. The installations are based on spatiality and temporality, and their detailed reading emphasizes the medium-specific features of the works as well as their fragmentary nature, heterogeneity and affectivity. The study is cross-disciplinary in that it connects perspectives from the visual culture, new art history and theory to the interpretation of contemporary art. The most important concepts from psychoanalysis, affect theory and trauma discourse used in the study include affect, object a (objet petit a) as articulated by Jacques Lacan, Sigmund Freud s uncanny (das Unheimliche) and trauma. Das Unheimliche has been translated as uncanny in art history under the influence of Rosalind Krauss. The object of the study, the unconscious in contemporary art, is approached through these concepts. The study focuses on Lacan s additions to the list of partial drives: the gaze and voice as scopic and invocative drives and their interpretations in the studies of the moving image. The texts by the American film theorist and art historian Kaja Silverman are in crucial role. The study locates contemporary art as part of trauma culture, which has a tendency to define individual and historical experiences through trauma. Some of the art works point towards trauma, which may appear as a theoretic or fictitious construction. The study presents a comprehensive collection of different kinds of trauma discourse in the field of art research through the texts of Hal Foster, Cathy Caruth, Ruth Leys and Shoshana Felman. The study connects trauma theory with the theoretical analysis of the interference and discontinuity of the moving image in the readings by Susan Buck-Morss, Mary Ann Doane and Peter Osborn among others. The analysis emphasizes different ways of seeing and multisensoriality in the reception of contemporary art. With their reflections and inverse projections, the surprising mechanisms of Hans-Christian Berg s sculptures are connected with Lacan s views on the early mirroring and imitation attempts of the individual s body image. Salla Tykkä s film trilogy Cave invites one to contemplate the Lacanian theory of the gaze in relation to the experiences of being seen. The three oceanic sculpture installations by Markus Copper are studied through the vocality they create, often through an aggressive way of acting, as well as from the point of view of the functioning of an invocative drive. The study compares the work of fiction and Freud s texts on paranoia and psychosis to Eija-Liisa Ahtila s manuscripts and moving image installations about the same topic. The cinematic time in Liisa Lounila s time-slice video installations is approached through the theoretical study of the unconscious temporal structure. The viewer of the moving image is inside the work in an in-between state: in a space produced by the contents of the work and its technology. The installations of the moving image enable us to inhabit different kinds of virtual bodies or spaces, which do not correspond with our everyday experiences. Nevertheless, the works of art often try to deconstruct the identification to what has been shown on screen. This way, the viewer s attention can be fixed on his own unconscious experiences in parallel with the work s deconstructed nature as representation. The study shows that contemporary art is a central cultural practice, which allows us to discuss the unconscious in a meaningful way. The study suggests that the agency that is discursively diffuse and consists of several different praxes should be called the unconscious. The emergence of the unconscious can happen in two areas: in contemporary art through different senses and discursive elements, and in the study of contemporary art, which, being a linguistic activity is sensitive to the movements of the unconscious. One of the missions of art research is to build different kinds of articulated constructs and to open an interpretative space for the nature of art as an event.
Resumo:
We report on a search for the production of the Higgs boson decaying to two bottom quarks accompanied by two additional quarks. The data sample used corresponds to an integrated luminosity of approximately 4 fb-1 of pp̅ collisions at √s=1.96 TeV recorded by the CDF II experiment. This search includes twice the integrated luminosity of the previous published result, uses analysis techniques to distinguish jets originating from light flavor quarks and those from gluon radiation, and adds sensitivity to a Higgs boson produced by vector boson fusion. We find no evidence of the Higgs boson and place limits on the Higgs boson production cross section for Higgs boson masses between 100 GeV/c2 and 150 GeV/c2 at the 95% confidence level. For a Higgs boson mass of 120 GeV/c2, the observed (expected) limit is 10.5 (20.0) times the predicted standard model cross section.
Resumo:
The design of a new microfurnace for use for Laue diffraction studies of solid-state transformations is described. The furnace operates in the temperature range 298-573 K with a thermal stability of about ± 0.1 K. The potential of the synchrotron-radiation Laue diffraction technique for studies of structural phase transitions is demonstrated. Experimental data on phase transitions in caesium periodate, potassium tetrachlorozincate and pentaerythritol are presented.