962 resultados para limit of quantitation
Resumo:
The quadrupole mass spectrometer (QMS) has over 30 years of spaceflight heritage in making important neutral gas and low energy ion observations. Given their geometrical constraints, these instruments are currently operated at the extreme limit of their capabilities. However, a technique called higher order auxiliary excitation provides a set of novel, robust, electronics-based solutions for improving the performance of these sensors. By driving the quadrupole rods with an additional frequency nearly twice that of the normal RF operating frequency, substantially increased abundance sensitivity, maximum attainable mass resolution, and peak stability can be achieved through operation of voltage scan lines through the center of formed upper stability islands. Such improvements are modeled using numerical simulations of ion trajectories in a quadrupole field with and without applied higher order auxiliary excitation. When compared to a traditional QMS with a mass range up to 500Da, sensors can be designed with the same precision electronics to have expected mass ranges beyond 1500Da with a power increase of less than twice that of its heritage implementations.
Resumo:
We introduce a new fiber-optical approach for reflection based refractive index mapping. Our approach leads to improved stability and reliability over existing free-space confocal instruments and significantly cuts alignment efforts and reduces the number of components needed. Other than properly cleaved fiber end-faces, this setup requires no additional sample preparation. The instrument is calibrated by means of a set of samples with known refractive indices. The index steps of commercially available fibers are measured accurately down to < 10⁻³. The precision limit of the instrument is currently of the order of 10⁻⁴.
Resumo:
The present report describes a real-time PCR-based procedure to reliably determine the quantity of Leishmania amastigotes in relation to the amount of host tissue in histological skin sections from canine and equine cases of cutaneous leishmaniasis. The novel diagnostic Leishmania-PCR has a detection limit of <0.02 amastigotes per μg tissue, which corresponds well to the detection limit of immunohistochemistry and is far beyond that of conventional histology. Our results emphasise the importance of PCR to complement routine histology of cutaneous leishmaniasis cases, particularly in laboratories in which no immunohistochemical assay is available.
Resumo:
The concentration of 11-nor-9-carboxy-Δ(9)-tetrahydrocannabinol (THCCOOH) in whole blood is used as a parameter for assessing the consumption behavior of cannabis consumers. The blood level of THCCOOH-glucuronide might provide additional information about the frequency of cannabis use. To verify this assumption, a column-switching liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the rapid and direct quantification of free and glucuronidated THCCOOH in human whole blood was newly developed. The method comprised protein precipitation, followed by injection of the processed sample onto a trapping column and subsequent gradient elution to an analytical column for separation and detection. The total LC run time was 4.5 min. Detection of the analytes was accomplished by electrospray ionization in positive ion mode and selected reaction monitoring using a triple-stage quadrupole mass spectrometer. The method was fully validated by evaluating the following parameters: linearity, lower limit of quantification, accuracy and imprecision, selectivity, extraction efficiency, matrix effect, carry-over, dilution integrity, analyte stability, and re-injection reproducibility. All acceptance criteria were analyzed and the predefined criteria met. Linearity ranged from 5.0 to 500 μg/L for both analytes. The method was successfully applied to whole blood samples from a large collective of cannabis consumers, demonstrating its applicability in the forensic field.
Resumo:
We study the coupling of non-linear supersymmetry to supergravity. The goldstino nilpotent superfield of global supersymmetry coupled to supergravity is described by a geometric action of the chiral curvature superfield R subject to the constraint (R−λ)2=0 with an appropriate constant λ. This constraint can be found as the decoupling limit of the scalar partner of the goldstino in a class of f(R) supergravity theories.
Resumo:
We investigate the transition from unitary to dissipative dynamics in the relativistic O(N) vector model with the λ(φ2)2 interaction using the nonperturbative functional renormalization group in the real-time formalism. In thermal equilibrium, the theory is characterized by two scales, the interaction range for coherent scattering of particles and the mean free path determined by the rate of incoherent collisions with excitations in the thermal medium. Their competition determines the renormalization group flow and the effective dynamics of the model. Here we quantify the dynamic properties of the model in terms of the scale-dependent dynamic critical exponent z in the limit of large temperatures and in 2≤d≤4 spatial dimensions. We contrast our results to the behavior expected at vanishing temperature and address the question of the appropriate dynamic universality class for the given microscopic theory.
Resumo:
The forensic utility of fatty acid ethyl esters (FAEEs) in dried blood spots (DBS) as short-term confirmatory markers for ethanol intake was examined. An LC-MS/MS method for the determination of FAEEs in DBS was developed and validated to investigate FAEE formation and elimination in a drinking study, whereby eight subjects ingested 0.66-0.84 g/kg alcohol to reach blood alcohol concentrations (BAC) of 0.8 g/kg. Blood was taken every 1.5-2 h, BAC was determined, and dried blood spots were prepared, with 50 μL of blood, for the determination of FAEEs. Lower limits of quantitation (LLOQ) were between 15 and 37 ng/mL for the four major FAEEs. Validation data are presented in detail. In the drinking study, ethyl palmitate and ethyl oleate proved to be the two most suitable markers for FAEE determination. Maximum FAEE concentrations were reached in samples taken 2 or 4 h after the start of drinking. The following mean peak concentrations (c̅ max) were reached: ethyl myristate 14 ± 4 ng/mL, ethyl palmitate 144 ± 35 ng/mL, ethyl oleate 125 ± 55 ng/mL, ethyl stearate 71 ± 21 ng/mL, total FAEEs 344 ± 91 ng/mL. Detectability of FAEEs was found to be on the same time scale as BAC. In liquid blood samples containing ethanol, FAEE concentrations increase post-sampling. This study shows that the use of DBS fixation prevents additional FAEE formation in blood samples containing ethanol. Positive FAEE results obtained by DBS analysis can be used as evidence for the presence of ethanol in the original blood sample. Graphical Abstract Time courses for fatty acid ethyl ester (FAEE) concentrations in DBS and ethanol concentrations for subject 1 over a period of 7 h. Ethanol ingestion occured during the first hour of the time course.
Resumo:
BACKGROUND Drug resistance is a major barrier to successful antiretroviral treatment (ART). Therefore, it is important to monitor time trends at a population level. METHODS We included 11,084 ART-experienced patients from the Swiss HIV Cohort Study (SHCS) between 1999 and 2013. The SHCS is highly representative and includes 72% of patients receiving ART in Switzerland. Drug resistance was defined as the presence of at least one major mutation in a genotypic resistance test. To estimate the prevalence of drug resistance, data for patients with no resistance test was imputed based on patient's risk of harboring drug resistant viruses. RESULTS The emergence of new drug resistance mutations declined dramatically from 401 to 23 patients between 1999 and 2013. The upper estimated prevalence limit of drug resistance among ART-experienced patients decreased from 57.0% in 1999 to 37.1% in 2013. The prevalence of three-class resistance decreased from 9.0% to 4.4% and was always <0.4% for patients who initiated ART after 2006. Most patients actively participating in the SHCS in 2013 with drug resistant viruses initiated ART before 1999 (59.8%). Nevertheless, in 2013, 94.5% of patients who initiated ART before 1999 had good remaining treatment options based on Stanford algorithm. CONCLUSION HIV-1 drug resistance among ART-experienced patients in Switzerland is a well-controlled relic from the pre-combination ART era. Emergence of drug resistance can be virtually stopped with new potent therapies and close monitoring.
Resumo:
Comets are thought to be the most pristine bodies present in the Solar System. In consequence of spending the majority of their existence beyond 30 AU, their composition can give insights on the physical and chemical conditions during their formation. Since August 2014 the European Space Agency spacecraft Rosetta accompanies the Jupiter family comet 67P/Churyumov-Gerasimenko on its way to perihelion and beyond. In this study the isotope fractionation of 34S are reported in H2S, OCS, SO2, S2, and CS2 at 67P. In addition for the first time the isotope fractionation for 33S is presented for cometary volatiles. The ratio 32S/33S is given for H2S, SO2 and a tentative value is given for CS2. With a mean value of -50 ± 22‰ and -306 ± 31‰ for δ34S and δ33S respectively, H2S shows a significant depletion in both 34S and 33S. For SO2 the depletion is less distinct with δ34S and δ33S being -67 ± 40‰ and -130 ± 53‰, respectively. The strongest depletion is present for CS2 with -114 ± 21‰and -276 ± 55‰, respectively. For OCS and S2 only δ34S could be determined which is -252 ± 77‰ and -357 ± 145‰, respectively. A comparison with sulfur isotopic ratios measured in SiC grains revealed that both SiC grains and the five volatile species have similar sulfur isotopic ratios. However, it is beyond the scope of this work to investigate the possibility of a link between SiC grains and cometary ices. Nevertheless, mass-dependent or mass-independent fractionation due to photo dissociation can be ruled out as sole cause of the seen depletion of 33S and 34S. Furthermore, an upper limit of (9.64 ± 0.19)·10.4 for D/H in HDS has been determined. This value is about a factor two higher than D/H in H2O for the same comet reported by (Altwegg et al., 2015). Besides the investigation concerning isotopic ratios of sulfur bearing species in this work the calibration and characterization of ROSINA/DFMS has been continued. Here it is reported about the deviation of the mass scale for MCP/LEDA low resolution spectra and the calibration measurements performed in the laboratory. Furthermore the outcome of the attempt to describe the sensitivity of DFMS with an empirical function will be discussed. The last part of the characterization of DFMS is dedicated to determine the so-called individual pixel gain for the laboratory and the flight model. Moreover, correlation between the depletion’s manifestation of the MCP with respect to the applied voltages has been investigated for both models. It has been found that further measurements are needed to understand the manifestation of depletion at the laboratory model. For the model on board of Rosetta it could be shown that most of the present feature are due to the usage of the MCP and suggestions have been made in order to answer the remaining question considering the depletion of the MCP.
Resumo:
Aims. We study the link between gravitational slopes and the surface morphology on the nucleus of comet 67P/Churyumov-Gerasimenko and provide constraints on the mechanical properties of the cometary material (tensile, shear, and compressive strengths). Methods. We computed the gravitational slopes for five regions on the nucleus that are representative of the different morphologies observed on the surface (Imhotep, Ash, Seth, Hathor, and Agilkia), using two shape models computed from OSIRIS images by the stereo-photoclinometry (SPC) and stereo-photogrammetry (SPG) techniques. We estimated the tensile, shear, and compressive strengths using different surface morphologies (overhangs, collapsed structures, boulders, cliffs, and Philae's footprint) and mechanical considerations. Results. The different regions show a similar general pattern in terms of the relation between gravitational slopes and terrain morphology: i) low-slope terrains (0-20 degrees) are covered by a fine material and contain a few large (>10 m) and isolated boulders; ii) intermediate-slope terrains (20-45 degrees) are mainly fallen consolidated materials and debris fields, with numerous intermediate-size boulders from <1m to 10m for the majority of them; and iii) high-slope terrains (45-90 degrees) are cliffs that expose a consolidated material and do not show boulders or fine materials. The best range for the tensile strength of overhangs is 3-15 Pa (upper limit of 150 Pa), 4-30 Pa for the shear strength of fine surface materials and boulders, and 30-150 Pa for the compressive strength of overhangs (upper limit of 1500 Pa). The strength-to-gravity ratio is similar for 67P and weak rocks on Earth. As a result of the low compressive strength, the interior of the nucleus may have been compressed sufficiently to initiate diagenesis, which could have contributed to the formation of layers. Our value for the tensile strength is comparable to that of dust aggregates formed by gravitational instability and tends to favor a formation of comets by the accrection of pebbles at low velocities.
Resumo:
Three features of the heat shock response, reorganization of protein expression, intracellular accumulation of trehalose, and alteration in unsaturation degree of fatty acids were investigated in the thermophilic fungus Chaetomium thermophile and compared to the response displayed by a closely related mesophilic species, C. brasiliense. Thermophilic heat shock response paralleled the mesophilic response in many respects like (i) the temperature difference observed between normothermia and the upper limit of translational activity, (ii) the transient nature of the heat shock response at the level of protein expression including both the induction of heat shock proteins (HSPs) as well as the repression of housekeeping proteins, (iii) the presence of representatives of high-molecular-weight {HSPs} families, (iv) intracellular accumulation of trehalose, and finally (v) modifications in fatty acid composition. On the other hand, a great variability between the two organisms was observed for the proteins expressed during stress, in particular a protein of the {HSP60} family that was only observed in C. thermophile. This peptide was also present constitutively at normal temperature and may thus fulfil thermophilic functions. It is shown that accumulation of trehalose does not play a part in thermophily but is only a stress response. C. thermophile contains less polyunsaturated fatty acids at normal temperature than C. brasiliense, a fact that can be directly related to thermophily. When subjected to heat stress, both organisms tended to accumulate shorter and less unsaturated fatty acids.
Resumo:
Nitrate reductase in Escherichia coli is a membrane-bound anaerobic enzyme that is repressed by oxygen and induced by nitrate. The genetic organization of the structural genes for the two larger subunits of nitrate reductase ((alpha) and (beta)) was determined by immunoprecipitation analysis of the formation of these proteins in nitrate reductase-deficient mutants resulting from transposon Tn5 mutagenesis. The results suggested that the genes encoding the (alpha) and (beta) subunits (narG and H) were arranged in an operon with transcription in the direction promoter(--->)(alpha)(--->)(beta). Segments of the chromosome containing the Tn5 inserts from several of the mutants were cloned into plasmid pBR322 and the positions of the transposons determined by restriction mapping. The Tn5 insertion sites were localized on two contiguous EcoRI fragments spanning about 6.6 kilobases of DNA. The narI gene (proposed to encode the (gamma) subunit) was positioned immediately downstream from the (beta)-gene (narH) by Southern analysis of Tn10 insertions into the narI locus. A Tn10 insertion into the narK locus, proposed to encode a nitrate-sensitive repressor of other anaerobic enzymes, was located about 1.5 kilobases upstream from the narGHI operon promoter. The narL locus, proposed to encode a nitrate-sensitive positive regulator of the narGHI operon and known to be genetically linked to the other nar genes, was demonstrated to lie outside a 19.3-kilobase region of the chromosome which encompasses the other nar genes. The physical limit of the narGHI promoter was defined by studying the effect of Tn5 insertions into a hybrid plasmid containing the functional operon. The points of origin of the coding regions for the (alpha) and (beta) genes were deduced by alignment of the chromosomal map of Tn5 insertion sites with the sizes of (alpha) and (beta) subunit fragments produced by plasmids carrying these Tn5 inserts in the nar operon. The coding region for the (alpha) subunit (143,000 daltons) begins about 250 nucleotides downstream from the deduced limit of the promoter region and includes about 4.0 kilobases of DNA; the region encoding (beta) (60,000 daltons) lies immediately downstream from the (alpha)-gene and is approximately 1.6 kilobases in length. The adjacent region encoding the (gamma) subunit (19,000 daltons) is approximately 0.5 kilobase in length. ^
Resumo:
Introduction. Lake Houston serves as a reservoir for both recreational and drinking water for residents of Houston, Texas, and the metropolitan area. The Texas Commission on Environmental Quality (TCEQ) expressed concerns about the water quality and increasing amounts of pathogenic bacteria in Lake Houston (3). The objective of this investigation is to evaluate water quality for the presence of bacteria, nitrates, nitrites, carbon, phosphorus, dissolved oxygen, pH, turbidity, suspended solids, dissolved solids, and chlorine in Cypress Creek. The aims of this project are to analyze samples of water from Cypress Creek and to render a quantitative and graphical representation of the results. The collected information will allow for a better understanding of the aqueous environment in Cypress Creek.^ Methods. Water samples were collected in August 2009 and analyzed in the field and at UTSPH laboratory by spectrophotometry and other methods. Mapping software was utilized to develop novel maps of the sample sites using coordinates attained with the Global Positioning System (GPS). Sample sites and concentrations were mapped using Geographic Information System (GIS) software and correlated with permitted outfalls and other land use characteristic.^ Results. All areas sampled were positive for the presence of total coliform and Escherichia coli (E. coli). The presences of other water contaminants varied at each location in Cypress Creek but were under the maximum allowable limits designated by the Texas Commission on Environmental Quality. However, dissolved oxygen concentrations were elevated above the TCEQ limit of 5.0 mg/L at majority of the sites. One site had near-limit concentration of nitrates at 9.8 mg/L. Land use above this site included farm land, agricultural land, golf course, parks, residential neighborhoods, and nine permitted TCEQ effluent discharge sites within 0.5 miles upstream.^ Significance. Lake Houston and its tributary, Cypress Creek, are used as recreational waters where individuals may become exposed to microbial contamination. Lake Houston also is the source of drinking water for much of Houston/Harris and Galveston Counties. This research identified the presence of microbial contaminates in Cypress Creek above TCEQ regulatory requirements. Other water quality variables measured were in line with TCEQ regulations except for near-limit for nitrate at sample site #10, at Jarvis and Timberlake in Cypress Texas.^
Resumo:
Detection of malarial sporozoites by a double antibody sandwich enzyme linked immunosorbent assay (ELISA) is described. This investigation utilized the Anopheles stephensi-Plasmodium berghei malaria model for the generation of sporozoites. Anti-sporozoite antibody was obtained from the sera of rats which had been bitten by An. stephensi with salivary gland sporozoites. Mosquitoes were irradiated prior to feeding on the rats to render the sporozoites non-viable.^ The assay employed microtiter plates coated with their rat anti-sporozoite antiserum or rat anti-sporozoite IgG. Intact and sonicated sporozoites were used as antigens. Initially, sporozoites were detected by an ELISA using staphylococcal protein A conjugated with alkaline phosphatase. Sporozoites were also detected using alkaline phosphatase or horseradish peroxidase conjugated to anti-sporozoite IgG. Best results were obtained using the alkaline phosphatase conjugate.^ This investigation included the titration of antigen, coating antibody and labelled antibody as well as studies of various incubation times. A radioimmunoassay (RIA) was also developed and compared with the ELISA for detecting sporozoites. Finally, the detection of a single infected mosquito in pools of 5 to 10 whole, uninfested ones was studied using both ELISA and RIA.^ Sonicated sporozoites were more readily detected than intact sporozoites. The lower limit of detection was approximately 500 sporozoites per ml. Results using ELISA or RIA were similar. The ability of the ELISA to detect a single infected mosquito in a pool of uninfected ones indicates that this technique has potential use in entomological field studies which aim at determining the vector status of anopheline mosquitoes. The potential of the ELISA for identifying sporozoites of different species of malaria is discussed. ^
Resumo:
Species variations in formaldehyde solutions and gases were investigated by means of infrared spectral analysis. Double beam infrared spectrometry in conjunction with sodium chloride wafer technique and solvent compensation technique were employed. Formaldehyde species in various solutions were investigated. Formalin 37% was stable for many months. Refrigeration had no effects on its stability. Spectral changes were detected in 1000 ppm formaldehyde solutions. The absorbances of very diluted solutions up to 100 ppm were lower than the detection limit of the instruments. Solvent compensation improved resolution, but was associated with an observed lack of repeatability. Formaldehyde species in animal chambers containing animals and in mobile home air were analyzed with the infrared spectrophotometer equipped with a 10 cm gas cell. Spectra were not different from the spectrum of clean air. A portable single beam infrared spectrometer with a 20 meter pathlength was used for reinvestigation. Indoor formaldehyde could not be detected in the spectral; conversely, an absorption peak at 3.58 microns was found in the spectra of 3 and 15 ppm formaldehyde gas in animal chambers. This peak did not appear in the spectrum of the control chamber. Because of concerns over measurement bias among various analytical methods for formaldehyde, side-by-side comparisons were conducted in both laboratory and field measurements. The chromotropic acid method with water and 1% sodium bisulfite as collection media, the pararosaniline method, and a single beam infrared spectrometer were compared. Measurement bias was elucidated and the extent of the effects of temperature and humidity was also determined. The problems associated with related methods were discussed. ^