954 resultados para industrial applications
Resumo:
Power system planning, control and operation require an adequate use of existing resources as to increase system efficiency. The use of optimal solutions in power systems allows huge savings stressing the need of adequate optimization and control methods. These must be able to solve the envisaged optimization problems in time scales compatible with operational requirements. Power systems are complex, uncertain and changing environments that make the use of traditional optimization methodologies impracticable in most real situations. Computational intelligence methods present good characteristics to address this kind of problems and have already proved to be efficient for very diverse power system optimization problems. Evolutionary computation, fuzzy systems, swarm intelligence, artificial immune systems, neural networks, and hybrid approaches are presently seen as the most adequate methodologies to address several planning, control and operation problems in power systems. Future power systems, with intensive use of distributed generation and electricity market liberalization increase power systems complexity and bring huge challenges to the forefront of the power industry. Decentralized intelligence and decision making requires more effective optimization and control techniques techniques so that the involved players can make the most adequate use of existing resources in the new context. The application of computational intelligence methods to deal with several problems of future power systems is presented in this chapter. Four different applications are presented to illustrate the promises of computational intelligence, and illustrate their potentials.
Resumo:
Presently power system operation produces huge volumes of data that is still treated in a very limited way. Knowledge discovery and machine learning can make use of these data resulting in relevant knowledge with very positive impact. In the context of competitive electricity markets these data is of even higher value making clear the trend to make data mining techniques application in power systems more relevant. This paper presents two cases based on real data, showing the importance of the use of data mining for supporting demand response and for supporting player strategic behavior.
Resumo:
Development of Dual Source Computed Tomography (Definition, Siemens Medical Solutions, Erlanger, Germany) allowed advances in temporal resolution, with the addition of a second X-ray source and an array of detectors to the TCM 64 slices. The ability to run exams on Dual Energy, allows greater differentiation of tissues, showing differences between closer attenuation coefficients. In terms of renal applications, the distinction of kidney stones and masses become one of the main advantages of the use of dual-energy technology. This article pretends to demonstrate operating principles of this equipment, as its main renal applications.
Resumo:
The idea behind creating this special issue on real world applications of intelligent tutoring systems was to bring together in a single publication some of the most important examples of success in the use of ITS technology. This will serve as a reference to all researchers working in the area. It will also be an important resource for the industry, showing the maturity of ITS technology and creating an atmosphere for funding new ITS projects. Simultaneously, it will be valuable to academic groups, motivating students for new ideas of ITS and promoting new academic research work in the area.
Resumo:
Copyright 2013 Springer Netherlands.
Resumo:
O artigo situa a questão da saúde no contexto do desenvolvimento nacional e da política industrial. Tomou-se a idéia de corte estruturalista, marxista e schumpeteriano, onde a indústria e as inovações constituem os elementos determinantes do dinamismo das economias capitalistas e de sua posição relativa na economia mundial. Todos os países que se desenvolveram e passaram a competir em melhores condições com os países avançados associaram uma indústria forte com uma base endógena de conhecimento, de aprendizado e de inovação. Todavia, na área da saúde essa visão é problemática, uma vez que os interesses empresariais se movem pela lógica econômica do lucro e não para o atendimento das necessidades da saúde. A noção de complexo industrial da saúde constitui uma tentativa e fornecer um referencial teórico que permita articular duas lógicas distintas: a sanitária e a do desenvolvimento econômico. O trabalho procurou mostrar, com base em dados de comércio exterior, como a desconsideração da lógica do desenvolvimento nas políticas de saúde levou a uma situação de vulnerabilidade econômica do setor que pode limitar os objetivos de universalidade, eqüidade e integralidade. Nesse contexto, propõe-se uma ruptura cognitiva e política com as visões antagônicas que colocam, de um lado, as necessidades da saúde e, de outro, da indústria. Um país que pretende chegar a uma condição de desenvolvimento e de independência requer, ao mesmo tempo, indústrias fortes e inovadoras, e um sistema de saúde inclusivo e universal.
Resumo:
Mestrado em Engenharia Electrotécnica e de Computadores
Resumo:
A voltage limiter circuit for indoor light energy harvesting applications is presented. This circuit is a part of a bigger system, whose function is to harvest indoor light energy, process it and store it, so that it can be used at a later time. This processing consists on maximum power point tracking (MPPT) and stepping-up, of the voltage from the photovoltaic (PV) harvester cell. The circuit here described, ensures that even under strong illumination, the generated voltage will not exceed the limit allowed by the technology, avoiding the degradation, or destruction, of the integrated die. A prototype of the limiter circuit was designed in a 130 nm CMOS technology. The layout of the circuit has a total area of 23414 mu m(2). Simulation results, using Spectre, are presented.
Resumo:
Mestrado em Engenharia Electrotécnica e de Computadores
Resumo:
: In this work we derive an analytical solution given by Bessel series to the transient and one-dimensional (1D) bioheat transfer equation in a multi-layer region with spatially dependent heat sources. Each region represents an independent biological tissue characterized by temperature-invariant physiological parameters and a linearly temperature dependent metabolic heat generation. Moreover, 1D Cartesian, cylindrical or spherical coordinates are used to define the geometry and temperature boundary conditions of first, second and third kinds are assumed at the inner and outer surfaces. We present two examples of clinical applications for the developed solution. In the first one, we investigate two different heat source terms to simulate the heating in a tumor and its surrounding tissue, induced during a magnetic fluid hyperthermia technique used for cancer treatment. To obtain an accurate analytical solution, we determine the error associated with the truncated Bessel series that defines the transient solution. In the second application, we explore the potential of this model to study the effect of different environmental conditions in a multi-layered human head model (brain, bone and scalp). The convective heat transfer effect of a large blood vessel located inside the brain is also investigated. The results are further compared with a numerical solution obtained by the Finite Element Method and computed with COMSOL Multi-physics v4.1 (c). (c) 2013 Elsevier Ltd. All rights reserved.
Resumo:
IBBA Strategic Planning - Workshop III, Plant Biotechnology Ponta Delgada, 25 Janeiro, 2011.
Resumo:
Mestrado em Engenharia Electrotécnica e de Computadores
Resumo:
Mestrado em Engenharia Química
Resumo:
A start-up circuit, used in a micro-power indoor light energy harvesting system, is described. This start-up circuit achieves two goals: first, to produce a reset signal, power-on-reset (POR), for the energy harvesting system, and secondly, to temporarily shunt the output of the photovoltaic (PV) cells, to the output node of the system, which is connected to a capacitor. This capacitor is charged to a suitable value, so that a voltage step-up converter starts operating, thus increasing the output voltage to a larger value than the one provided by the PV cells. A prototype of the circuit was manufactured in a 130 nm CMOS technology, occupying an area of only 0.019 mm(2). Experimental results demonstrate the correct operation of the circuit, being able to correctly start-up the system, even when having an input as low as 390 mV using, in this case, an estimated energy of only 5.3 pJ to produce the start-up.
Resumo:
The present work aims at evaluating the efficiency of an organic polymer from vegetal source used as coagulant for treating different types of industrial effluents. This coagulant (Flox-QT) is obtained from the Black Acacia (Acacia mearnsii). The effluents studied were produced in petrochemical, leather, cork stoppers, metalworking, olive oil, glue, paint (printing), textile and paper industries. The parameters analyzed in the effluents before and after treatment were selected according to the type of wastewater and included pH, conductivity, apparent colour, turbidity, total suspended solids (TSS), chemical oxygen demand (COD) and some metals. The coagulant proved to be efficient for almost all effluents tested. The best results were obtained for the paper industry wastewater, with 91% removal of chemical oxygen demand and 95% of total suspended solids removal. The estimated cost of this treatment would be only 0.24 Euro per cubic meter of treated effluent, only regarding the price of the coagulant and the required dosage. The use of this coagulant is also adequate for the valorisation of the sludge obtained, which in this case could be recycled for paper production.