979 resultados para chemical vapor deposition processes
Resumo:
We have formed and characterized polycrystalline diamond films with surfaces having hydrogen terminations, oxygen terminations, or fluorine terminations, using a small, simple and novel plasma gun to bombard the diamond surface, formed by plasma assisted CVD in a prior step, with ions of the wanted terminating species. The potential differences between surface regions with different terminations were measured by Kelvin Force Microscopy (KFM). The highest potential occurred for oxygen termination regions and the lowest for fluorine. The potential difference between regions with oxygen terminations and hydrogen terminations was about 80 mV, and between regions with hydrogen terminations and fluorine terminations about 150 mV. Regions with different terminations were identified and imaged using the secondary electron signal provided by scanning electron microscopy (SEM). since this signal presents contrast for surfaces with different electrical properties. The wettability of the surfaces with different terminations was evaluated, measuring contact angles. The sample with oxygen termination was the most hydrophilic, with a contact angle of 75 degrees. hydrogen-terminated regions with 83 degrees, and fluorine regions 93 degrees, the most hydrophobic sample. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Multilayers of PbTe quantum dots embedded in SiO2 were fabricated by alternate use of Pulsed Laser Deposition (PLD) and Plasma Enhanced Chemical Vapor Deposition (PECVD) techniques. The morphological properties of the nanostructured material were studied by means of High Resolution Transmission Electron Microscopy (HRTEM), Grazing-Incidence Small-Angle X-ray scattering (GISAXS) and X-ray Reflectometry (XRR) techniques. A preliminary analysis of the GISAXS spectra provided information about the multilayer periodicity and its relationship to the size of the deposited PbTe nanoparticles. Finally multilayers were fabricated inside a Fabry-Perot cavity. The device was characterized by means of Scanning Electron Microscopy (SEM). Transmittance measurements show the device functionality in the infrared region. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The gas-phase ion/molecule reactions of F(-) and EtO(-) with Ge(OEt)(4) yield readily and exclusively pentacoordinated complexes XGe(OEt)(4)(-) (X = F, EtO) at pressures in the 10(-8) T range as observed by FT-ICR techniques. These hypervalent species are prone to undergo sequential fragmentations induced by infrared multiphoton excitation that lead to a variety of germyl and germanate anions. In the case of FGe(OEt)(4)(-), three primary competitive channels are observed in the IRMPD process that can be identified as (EtO)(3)GeO(-), F(EtO)(2)GeO(-) and (EtO)(3)Ge(-). Ab initio calculations have been carried out to characterize the primary fragmentation paths induced by IRMPD and the most favorable structure of the resulting anions. The gas-phase acidity of a number of these germanium-containing ions have been estimated by bracketing experiments and by theoretical calculations. Germanate anions such as (EtO)(3)GeO(-) undergo some interesting reactions with H(2)S to give rise to anions such as (EtO)(3)GeS(-) and (EtO)(2)Ge(OH)S(-). (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Boron-doped diamond (BDD) films grown on the titanium substrate were used to study the electrochemical degradation of Reactive Orange (RO) 16 Dye. The films were produced by hot filament chemical vapor deposition (HFCVD) technique using two different boron concentrations. The growth parameters were controlled to obtain heavily doped diamond films. They were named as E1 and E2 electrodes, with acceptor concentrations of 4.0 and 8.0 x 10(21) atoms cm(-3), respectively. The boron levels were evaluated from Mott-Schottky plots also corroborated by Raman`s spectra, which characterized the film quality as well as its physical property. Scanning Electron Microscopy showed well-defined microcrystalline grain morphologies with crystal orientation mixtures of (1 1 1) and (1 00). The electrode efficiencies were studied from the advanced oxidation process (AOP) to degrade electrochemically the Reactive Orange 16 azo-dye (RO16). The results were analyzed by UV/VIS spectroscopy, total organic carbon (TOC) and high-performance liquid chromatography (HPLC) techniques. From UV/VIS spectra the highest doped electrode (E2) showed the best efficiency for both, the aromaticity reduction and the azo group fracture. These tendencies were confirmed by the TOC and chromatographic measurements. Besides, the results showed a direct relationship among the BDD morphology, physical property, and its performance during the degradation process. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
o presente trabalho é um estudo exploratório a respeito da síntese de filmes de diamante via deposiçãoquímica a vapor (CVD) sobre alguns substratos cerâmicos: diboreto de titânio (TiB2), ítria (Y20a), zircão (ZrSi04), zircônia parcialmente e totalmente estabilizada com ítria (Zr02), pirofilita ( Al2Si4OlO(OHh), .alumina (Al2Oa) e nitreto de boro hexagonal (h-BN). Estes substratos foram produzidos, em sua maioria, a partir da sinterização de pós micrométricos em altas temperaturas. Além do estudo em relação a possíveis candidatos alternativos ao tradicional silício para o crescimento de filmes auto-sustentáveis, procuramos encontrar substratos onde o filme aderisse bem e cujas propriedades tribológicas pudessem ser melhoradas com o recobrimento com filme de diamante.Dentre os materiais selecionados, constatamos que a topografia da superfície relacionada à densidade de contornos de grão, desempenha um papel relevante na nucleação do diamante. Além disso, os materiais que favorecem a formação de carbonetos conduziram a melhores resultados na nucleação e crescimento do filme, indicando que a ação da atmosfera reativa do CVD com o substrato também contribui decisivamente para o processo de nucleação. A partir dos resultados obtidos, concluímos que a aderência do filme de diamante ao zircão é excelente, assim como a qualidade do filme, o que pode serexplorado convenientemente caso as propriedades mecânicas do sinterizado de zircão sejam adequadas. No caso da zircônia parcialmente estabilizada, os resultados obtidos foram surpreendentes e este material poderia substituir o convencional substrato de silício para a deposição de filmes auto-sustentados de diamante, com inúmeras vantagens, dentre elas o fato de ser reutilizável e de não ser necessário ataque com ácidos para remoção do substrato, o que evita a geração de resíduos químicos.
Resumo:
Foram estudadas as propriedades elétricas de estruturas MOS envolvendo materiais com Zr e Hf: Al/HfO2/Si, Al/HfAlO/Si, Al/ZrO2/Si e Al/ZrAlO/Si depositadas por JVD (Jet Vapor Deposition) submetidas a diferentes doses de implantação de nitrogênio e tratamentos térmicos; Au/HfO2/Si e Au/HfxSiyOz/Si preparadas por MOCVD (Metal-Organic Chemical Vapor Deposition) e Au/HfxSiyOz/SiO2/Si preparadas por sputtering reativo em O2 submetidas a tratamentos térmicos distintos. Para isso, além das medidas de C-V e I-V padrão, foi desenvolvido o método da condutância para estudo da densidade de estados na interface dielétrico/Si, o qual mostrou-se mais viável para as estruturas com dielétricos alternativos. A inclusão de Al na camada de dielétrico, bombardeamento por íons de nitrogênio, e tratamentos térmicos rápidos em atmosferas de O2 e N2 foram responsáveis por mudanças nas propriedades das amostras. Diversos mecanismos físicos que influenciam as propriedades elétricas dessas estruturas foram identificados e discutidos. Foi constatado que as interfaces com menores densidades de estados foram as das amostras preparadas por MOCVD e sputtering reativo.
Resumo:
Amorphous hydrogenated chlorinated carbon (a-C:H:Cl) films were produced by the plasma polymerization of chloroform-acetylene-argon mixtures in a radiofrequency plasma enhanced chemical vapor deposition system. The main parameter of interest was the proportion of chloroform in the feed, R(C), which was varied from 0 to 80%. Deposition rates of 80 nm min (1) were typical for the chlorinated films. Infrared reflection-absorption spectroscopy revealed the presence of C-Cl groups in all the films produced with chloroform in the feed. X-ray photoelectron spectroscopy confirmed this finding, and revealed a saturation of the chlorine content at similar to 47 at.% for R(C)>= 40%. The refractive index and optical gap, E(04), of the films were roughly in the 1.6 to 1.7, and the 2.8 to 3.7 eV range. These values were calculated from transmission ultraviolet-visible-near infrared spectra. Chlorination leads to an increase in the water surface contact angle from similar to 40 degrees to similar to 77 degrees. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
This work was performed to verify the chemical structure, mechanical and hydrophilic properties of amorphous hydrogenated carbon films prepared by plasma enhanced chemical vapor deposition, using acetylene/argon mixture as monomer. Films were prepared in a cylindrical quartz reactor, fed by 13.56 MHz radiofrequency. The films were grown during 5 min, for power varying from 25 to 125 W at a fixed pressure of 9.5 Pa. After deposition, all samples were treated by SF(6) plasma with the aim of changing their hydrophilic character. Film chemical structure investigated by Raman spectroscopy, revealed the increase of sp(3) hybridized carbon bonds as the plasma power increases. Hardness measurements performed by the nanoindentation technique showed an improvement from 5 GPa to 14 GPa following the increase discharge power. The untreated films presented a hydrophilic character, which slightly diminished after SF(6) plasma treatment.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Statement of problem. The use of ultrasonic tips has become an alternative for cavity preparation. However, there are concerns about this type of device, particularly with respect to intrapulpal temperatures and cavity preparation time.Purpose. The purpose of this study was to analyze pulpal temperature increases generated by an ultrasonic cavity preparation with chemical vapor deposition (CVD) tips, in comparison to preparation with a high-speed handpiece with a diamond rotary cutting instrument. The time required to complete the cavity preparation with each system was also evaluated.Material and methods. Thermocouples were positioned in the pulp chamber of 20 extracted human third molars. Slot-type cavities (3 x 3 x 2 mm) were prepared on the buccal and the lingual surfaces of each tooth. The test groups were: high-speed cavity preparation with diamond rotary cutting instruments (n = 20) and ultrasonic cavity preparation with CVD points (n = 20). During cavity preparation, the increases In pulpal temperature, and the time required for the preparation, were recorded and analyzed by Student's t test for paired samples (alpha = .05).Results. The average pulpal temperature increases were 4.3 degrees C for the high-speed preparation and 3.8 degrees C for the ultrasonic preparation, which were statistically similar (P = .052). However, significant differences were found (P < .001) for the time expended (3.3 minutes for the high-speed bur and 13.77 minutes for the ultrasound device).Conclusions. The intrapulpal temperatures produced during cavity preparation by ultrasonic tips versus high-speed bur preparation were similar. However, the use of the ultrasonic device required 4 times longer for the completion of a cavity preparation.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This work illustrates the advantages of using p-polarized radiation at an incidence angle of 70 degrees in contrast to the conventional unpolarized beam at normal (or near-normal) incidence for the infrared spectroscopic study of polycarbosilane, polysilazane and polysiloxane thin films synthesized by plasma enhanced chemical vapor deposition (PECVD) and subsequently irradiated with 170 keV He+ ions at fluences from 1 x 10(14) to 1 x 10(16) cm(-2). Several bands not seen using the conventional mode could be observed in the polarized mode. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
In this work films were produced by the plasma enhanced chemical vapor deposition (PECVD) of titanium tetraisopropoxide-oxygen-helium mixtures and irradiated with 150 keV singly-charged nitrogen ions (N(+)) at fluences, phi, between 10(14) and 10(16) cm(-2). Irradiation resulted in compaction, which reached about 40% (measured via the film thickness) at the highest fluence. Infrared reflection-absorption spectroscopy (IRRAS) revealed the presence of Ti-O bonds in all films. Both O-H and C-H groups were present in the as-deposited films, but the density of each of these decreased with increasing phi and was absent at high phi, indicating a loss of hydrogen. X-ray photoelectron spectroscopy (XPS) analyses revealed an increase in the C to Ti atomic ratio as phi increased, while the O to Ti ratio hardly altered, remaining at around 2.8. The optical gap of the films, derived from data obtained by ultraviolet-visible spectroscopy (UVS), remained at about 3.6 eV for all fluences except the highest, for which an abrupt fall to around 1.0 eV was observed. For the irradiated films, the electrical conductivity, measured using the two-point method, showed a systematic increase with increasing phi. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)