974 resultados para Tyrosine


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Orofacial movement is a complex function performed by facial and jaw muscles. Jaw movement is enacted through the triggering of motoneurons located primarily in the trigeminal motor nucleus (Mo5). The Mo5 is located in the pontine reticular formation, which is encircled by premotor neurons. Previous studies using retrograde tracers have demonstrated that premotor neurons innervating the Mo5 are distributed in brainstem areas, and electrophysiological studies have suggested the existence of a subcortical relay in the corticofugal-Mo5 pathway. Various neurotransmitters have been implicated in oral movement. Dopamine is of special interest since its imbalance may produce changes in basal ganglia activity, which generates abnormal movements, including jaw motor dysfunction, as in oral dyskinesia and possibly in bruxism. However, the anatomical pathways connecting the dopaminergic systems with Mo5 motoneurons have not been studied systematically. After injecting retrograde tracer fluorogold into the Mo5, we observed retrograde-labeled neurons in brainstem areas and in a few forebrain nuclei, such as the central nucleus of the amygdala, and the parasubthalamic nucleus. By using dual-labeled immunohistochemistry, we found tyrosine hydroxylase (a catecholamine-processing enzyme) immunoreactive fibers in close apposition to retrograde-labeled neurons in brainstem nuclei, in the central nucleus of the amygdala and the parasubthalamic nucleus, suggesting the occurrence of synaptic contacts. Therefore, we suggested that catecholamines may regulate oralfacial movements through the premotor brainstem nuclei, which are related to masticatory control, and forebrain areas related to autonomic and stress responses. (C) 2005 Elsevier B.V.. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Afferents to the primary startle circuit are essential for the elicitation and modulation of the acoustic startle reflex (ASR). In the rat, cochlear root neurons (CRNs) comprise the first component of the acoustic startle circuit and play a crucial role in mediating the ASR. Nevertheless, the neurochemical pattern of their afferents remains unclear. To determine the distribution of excitatory and inhibitory inputs, we used confocal microscopy to analyze the immunostaining for vesicular glutamate and GABA transporter proteins (VGLUT1 and VGAT) on retrogradely labeled CRNs. We also used reverse transcription-polymerase chain reaction (RT-PCR) and immunohistochemistry to detect and localize specific neurotransmitter receptor subunits in the cochlear root. Our results show differential distributions of VGLUT1- and VGAT-immunoreactive endings around cell bodies and dendrites. The RT-PCR data showed a positive band for several ionotropic glutamate receptor subunits, M1-M5 muscarinic receptor subtypes, the glycine receptor alpha 1 subunit (GlyR alpha 1), GABA(A), GABA(B), and subunits of alpha 2 and beta-noradrenergic receptors. By immunohistochemistry, we confirmed that CRN cell bodies exhibit positive immunoreaction for the glutamate receptor (GluR) 3 and NR1 GluR subunits. Cell bodies and dendrites were also positive for M2 and M4, and GlyR alpha 1. Other subunits, such as GluR1 and GluR4 of the AMPA GluRs, were observed in glial cells neighboring unlabeled CRN cell bodies. We further confirmed the existence of nor-adrenergic afferents onto CRNs from the locus coeruleus by combining tyrosine hydroxylase immunohistochemistry and tract-tracing experiments. Our results provide valuable information toward understanding how CRNs might integrate excitatory and inhibitory inputs, and hence how they could elicit and modulate the ASR. (C) 2008 IBRO. Published by Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Exposure to ultraviolet (UV) radiation induces generation of reactive oxygen species, production of proinflammatory cytokines and melanocyte-stimulating hormone (MSH) as well as increase in tyrosinase activity. The potential photoprotective effects of Coccoloba uvifera extract (CUE) were evaluated in UV-stimulated melanocytes.Human epidermal melanocytes were used as an in vitro model to evaluate the effects of CUE on the production interleukin-1 alpha (IL-1 alpha), tumor necrosis factor alpha (TNF-alpha), and alpha-MSH under basal and UV-stimulated conditions. Antioxidant and anti-tyrosinase activities were also evaluated in membrane lipid peroxidation and mushroom tyrosinase assay, respectively.Coccoloba uvifera L. showed antioxidant and anti-tyrosinase activities and also inhibited the production of IL-1 alpha, TNF-alpha and alpha-MSH in melanocytes subjected to UV radiation (P < 0.01). Moreover, CUE inhibited the activity of tyrosine kinase in cell culture under basal and UV radiation conditions (P < 0.001), corroborating the findings of the mushroom tyrosinase assay.This study supports the photoprotective potential of CUE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Interest in folliculogenesis has grown extensively in recent years. Nevertheless, several aspects of follicular activity are still poorly understood. Thus, in vitro culture of ovarian follicles using new substances has been established as a very viable model, enhancing the prospects for a better understanding of follicular activity. Among the family members of the fibroblast growth factor (FGFs), FGF-10 has received recent attention for its ability to regulate the development of ovarian follicles and oocyte maturation. Given the relevance of FGF-10 in the folliculogenesis process, this review aimed to describe the structural features, expression and the main biological effects of FGF-10 on the development of ovarian follicles in mammals.Review: Along this work, it was shown aspects related to structural characterization of FGF-10 and its receptors, as well as FGF-10 expression in different cell types, emphasizing its importance to follicular development. FGF-10 is a paracrine member of the family of FGFs, and is characterized by promoting biological responses via cell surface receptors (FGFRs) of tyrosine kinase-type. of these receptors, FGFR-1, FGFR-2 and FGFR-3 may undergo alternative transcriptional arrangements, enabling the formation of two isoforms (b and c) that have varying degrees of affinity for the various FGFs. Thus, seven FGFR proteins (FGFRs 1b, 1c, 2b, 2c, 3b, 3c and 4) with different binding specificities are generated from the four FGFR genes. The FGFRs transmit intracellular signals after binding with the ligand through the phosphorylation of tyrosine, which activates various transduction patterns in the cytoplasm. The signal transduction of FGF-10 may occur through three main pathways: protein of rat sarcoma (Ras)/MAPK, PLC gamma/Ca(2+) and phosphatidylinositol-3 kinase (PI3K)/protein kinase B (Akt), which are involved in the transmission of biological signals, leading to cellular proliferation and differentiation. FGF-10 mRNA expression was detected in the ovarian stroma, oocyte and theca cells of preantral and antral follicles. on the other hand, the expression of mRNA for FGF-10 receptors was found in, granulosa cells, theca cells, cumulus cells and oocytes. Although FGFs are widely distributed in different tissues and cell types, the importance and function of FGFs in the ovary are still poorly documented. FGF-10 has been shown to be an important mediator of mesenchymal and epithelial cell interactions during follicle development, promoting follicular survival, activation and growth. Besides the action on folliculogenesis, FGF-10 was recently identified as a growth factor able to improve oocyte competence. However, in antral follicles, the presence of FGF-10 is associated with increased follicular atresia, which matches its anti-estrogenic action.Discussion: From this review, we can conclude that FGF-10 is an important regulator of female reproduction. This growth factor acts in follicle survival, oocyte maturation, expansion of cumulus cells and proliferation of granulosa/theca cellsthrough direct and/or indirect actions in the control of folliculogenesis. Furthermore, FGF-10 seemed to have different effects throughout the follicular development. However, it is necessary to perform additional studies that may provide a better understanding about the importance of FGF-10 during folicullogenesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The keratin is not degraded by common enzyme, keratinases have the ability to degrade native keratin and others insoluble enzymes. In the present work was Studied keratinase produced by Streptomyces sp LMI-1 isolated from industrial plant of poultry processing. The enzyme degraded 87% of feathers after 120 h, it was stimulated by Ba(2+) and inhibited by Ca(2+), Mn(2+), EDTA and Hg(+). The optimum pH and temperature for the enzyme was 8.5 and 60 degrees C, respectively. The enzyme was stable after 2 hours at 50 degrees C. The culture broth analysis by thin layer chromatography showed presence of amino acids serine, methionine, proline, tyrosine and leucine after 72 hours of incubation. The microorganism showed potential for use in industrial process because of higher enzyme production and feathers degradation.