939 resultados para Time-Fractional Diffusion-Wave Problem


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents the construction, mathematical modeling and testing of a scaled universal hydraulic Power Take-Off (PTO) device for Wave Energy Converters (WECs). A specific prototype and test bench were designed and built to carry out the tests. The results obtained from these tests were used to adjust an in-house mathematical model. The PTO was initially designed to be coupled to a scaled wave energy capture device with a low speed and high torque oscillating motion and high power fluctuations. Any Energy Capture Device (ECD) that fulfils these requirements can be coupled to this PTO, provided that its scale is adequately defined depending on the rated power of the full scale prototype. The initial calibration included estimation of the pressure drops in the different components, the pressurization time of the oil inside the hydraulic cylinders and the volumetric efficiency of the complete circuit. Since the overall efficiency measured during the tests ranged from 0.69 to 0.8 and the dynamic performance of the PTO was satisfactory, the results are really promising and it is believed that this solution might prove effective in real devices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract to Part I

The inverse problem of seismic wave attenuation is solved by an iterative back-projection method. The seismic wave quality factor, Q, can be estimated approximately by inverting the S-to-P amplitude ratios. Effects of various uncertain ties in the method are tested and the attenuation tomography is shown to be useful in solving for the spatial variations in attenuation structure and in estimating the effective seismic quality factor of attenuating anomalies.

Back-projection attenuation tomography is applied to two cases in southern California: Imperial Valley and the Coso-Indian Wells region. In the Coso-Indian Wells region, a highly attenuating body (S-wave quality factor (Q_β ≈ 30) coincides with a slow P-wave anomaly mapped by Walck and Clayton (1987). This coincidence suggests the presence of a magmatic or hydrothermal body 3 to 5 km deep in the Indian Wells region. In the Imperial Valley, slow P-wave travel-time anomalies and highly attenuating S-wave anomalies were found in the Brawley seismic zone at a depth of 8 to 12 km. The effective S-wave quality factor is very low (Q_β ≈ 20) and the P-wave velocity is 10% slower than the surrounding areas. These results suggest either magmatic or hydrothermal intrusions, or fractures at depth, possibly related to active shear in the Brawley seismic zone.

No-block inversion is a generalized tomographic method utilizing the continuous form of an inverse problem. The inverse problem of attenuation can be posed in a continuous form , and the no-block inversion technique is applied to the same data set used in the back-projection tomography. A relatively small data set with little redundancy enables us to apply both techniques to a similar degree of resolution. The results obtained by the two methods are very similar. By applying the two methods to the same data set, formal errors and resolution can be directly computed for the final model, and the objectivity of the final result can be enhanced.

Both methods of attenuation tomography are applied to a data set of local earthquakes in Kilauea, Hawaii, to solve for the attenuation structure under Kilauea and the East Rift Zone. The shallow Kilauea magma chamber, East Rift Zone and the Mauna Loa magma chamber are delineated as attenuating anomalies. Detailed inversion reveals shallow secondary magma reservoirs at Mauna Ulu and Puu Oo, the present sites of volcanic eruptions. The Hilina Fault zone is highly attenuating, dominating the attenuating anomalies at shallow depths. The magma conduit system along the summit and the East Rift Zone of Kilauea shows up as a continuous supply channel extending down to a depth of approximately 6 km. The Southwest Rift Zone, on the other hand, is not delineated by attenuating anomalies, except at a depth of 8-12 km, where an attenuating anomaly is imaged west of Puu Kou. The Ylauna Loa chamber is seated at a deeper level (about 6-10 km) than the Kilauea magma chamber. Resolution in the Mauna Loa area is not as good as in the Kilauea area, and there is a trade-off between the depth extent of the magma chamber imaged under Mauna Loa and the error that is due to poor ray coverage. Kilauea magma chamber, on the other hand, is well resolved, according to a resolution test done at the location of the magma chamber.

Abstract to Part II

Long period seismograms recorded at Pasadena of earthquakes occurring along a profile to Imperial Valley are studied in terms of source phenomena (e.g., source mechanisms and depths) versus path effects. Some of the events have known source parameters, determined by teleseismic or near-field studies, and are used as master events in a forward modeling exercise to derive the Green's functions (SH displacements at Pasadena that are due to a pure strike-slip or dip-slip mechanism) that describe the propagation effects along the profile. Both timing and waveforms of records are matched by synthetics calculated from 2-dimensional velocity models. The best 2-dimensional section begins at Imperial Valley with a thin crust containing the basin structure and thickens towards Pasadena. The detailed nature of the transition zone at the base of the crust controls the early arriving shorter periods (strong motions), while the edge of the basin controls the scattered longer period surface waves. From the waveform characteristics alone, shallow events in the basin are easily distinguished from deep events, and the amount of strike-slip versus dip-slip motion is also easily determined. Those events rupturing the sediments, such as the 1979 Imperial Valley earthquake, can be recognized easily by a late-arriving scattered Love wave that has been delayed by the very slow path across the shallow valley structure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this thesis, a method to retrieve the source finiteness, depth of faulting, and the mechanisms of large earthquakes from long-period surface waves is developed and applied to several recent large events.

In Chapter 1, source finiteness parameters of eleven large earthquakes were determined from long-period Rayleigh waves recorded at IDA and GDSN stations. The basic data set is the seismic spectra of periods from 150 to 300 sec. Two simple models of source finiteness are studied. The first model is a point source with finite duration. In the determination of the duration or source-process times, we used Furumoto's phase method and a linear inversion method, in which we simultaneously inverted the spectra and determined the source-process time that minimizes the error in the inversion. These two methods yielded consistent results. The second model is the finite fault model. Source finiteness of large shallow earthquakes with rupture on a fault plane with a large aspect ratio was modeled with the source-finiteness function introduced by Ben-Menahem. The spectra were inverted to find the extent and direction of the rupture of the earthquake that minimize the error in the inversion. This method is applied to the 1977 Sumbawa, Indonesia, 1979 Colombia-Ecuador, 1983 Akita-Oki, Japan, 1985 Valparaiso, Chile, and 1985 Michoacan, Mexico earthquakes. The method yielded results consistent with the rupture extent inferred from the aftershock area of these earthquakes.

In Chapter 2, the depths and source mechanisms of nine large shallow earthquakes were determined. We inverted the data set of complex source spectra for a moment tensor (linear) or a double couple (nonlinear). By solving a least-squares problem, we obtained the centroid depth or the extent of the distributed source for each earthquake. The depths and source mechanisms of large shallow earthquakes determined from long-period Rayleigh waves depend on the models of source finiteness, wave propagation, and the excitation. We tested various models of the source finiteness, Q, the group velocity, and the excitation in the determination of earthquake depths.

The depth estimates obtained using the Q model of Dziewonski and Steim (1982) and the excitation functions computed for the average ocean model of Regan and Anderson (1984) are considered most reasonable. Dziewonski and Steim's Q model represents a good global average of Q determined over a period range of the Rayleigh waves used in this study. Since most of the earthquakes studied here occurred in subduction zones Regan and Anderson's average ocean model is considered most appropriate.

Our depth estimates are in general consistent with the Harvard CMT solutions. The centroid depths and their 90 % confidence intervals (numbers in the parentheses) determined by the Student's t test are: Colombia-Ecuador earthquake (12 December 1979), d = 11 km, (9, 24) km; Santa Cruz Is. earthquake (17 July 1980), d = 36 km, (18, 46) km; Samoa earthquake (1 September 1981), d = 15 km, (9, 26) km; Playa Azul, Mexico earthquake (25 October 1981), d = 41 km, (28, 49) km; El Salvador earthquake (19 June 1982), d = 49 km, (41, 55) km; New Ireland earthquake (18 March 1983), d = 75 km, (72, 79) km; Chagos Bank earthquake (30 November 1983), d = 31 km, (16, 41) km; Valparaiso, Chile earthquake (3 March 1985), d = 44 km, (15, 54) km; Michoacan, Mexico earthquake (19 September 1985), d = 24 km, (12, 34) km.

In Chapter 3, the vertical extent of faulting of the 1983 Akita-Oki, and 1977 Sumbawa, Indonesia earthquakes are determined from fundamental and overtone Rayleigh waves. Using fundamental Rayleigh waves, the depths are determined from the moment tensor inversion and fault inversion. The observed overtone Rayleigh waves are compared to the synthetic overtone seismograms to estimate the depth of faulting of these earthquakes. The depths obtained from overtone Rayleigh waves are consistent with the depths determined from fundamental Rayleigh waves for the two earthquakes. Appendix B gives the observed seismograms of fundamental and overtone Rayleigh waves for eleven large earthquakes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The bifurcation and nonlinear stability properties of the Meinhardt-Gierer model for biochemical pattern formation are studied. Analyses are carried out in parameter ranges where the linearized system about a trivial solution loses stability through one to three eigenfunctions, yielding both time independent and periodic final states. Solution branches are obtained that exhibit secondary bifurcation and imperfection sensitivity and that appear, disappear, or detach themselves from other branches.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The problem of "exit against a flow" for dynamical systems subject to small Gaussian white noise excitation is studied. Here the word "flow" refers to the behavior in phase space of the unperturbed system's state variables. "Exit against a flow" occurs if a perturbation causes the phase point to leave a phase space region within which it would normally be confined. In particular, there are two components of the problem of exit against a flow:

i) the mean exit time

ii) the phase-space distribution of exit locations.

When the noise perturbing the dynamical systems is small, the solution of each component of the problem of exit against a flow is, in general, the solution of a singularly perturbed, degenerate elliptic-parabolic boundary value problem.

Singular perturbation techniques are used to express the asymptotic solution in terms of an unknown parameter. The unknown parameter is determined using the solution of the adjoint boundary value problem.

The problem of exit against a flow for several dynamical systems of physical interest is considered, and the mean exit times and distributions of exit positions are calculated. The systems are then simulated numerically, using Monte Carlo techniques, in order to determine the validity of the asymptotic solutions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The problem of the existence and stability of periodic solutions of infinite-lag integra-differential equations is considered. Specifically, the integrals involved are of the convolution type with the dependent variable being integrated over the range (- ∞,t), as occur in models of population growth. It is shown that Hopf bifurcation of periodic solutions from a steady state can occur, when a pair of eigenvalues crosses the imaginary axis. Also considered is the existence of traveling wave solutions of a model population equation allowing spatial diffusion in addition to the usual temporal variation. Lastly, the stability of the periodic solutions resulting from Hopf bifurcation is determined with aid of a Floquet theory.

The first chapter is devoted to linear integro-differential equations with constant coefficients utilizing the method of semi-groups of operators. The second chapter analyzes the Hopf bifurcation providing an existence theorem. Also, the two-timing perturbation procedure is applied to construct the periodic solutions. The third chapter uses two-timing to obtain traveling wave solutions of the diffusive model, as well as providing an existence theorem. The fourth chapter develops a Floquet theory for linear integro-differential equations with periodic coefficients again using the semi-group approach. The fifth chapter gives sufficient conditions for the stability or instability of a periodic solution in terms of the linearization of the equations. These results are then applied to the Hopf bifurcation problem and to a certain population equation modeling periodically fluctuating environments to deduce the stability of the corresponding periodic solutions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fluid diffusion in glassy polymers proceeds in ways that are not explained by the standard diffusion model. Although the reasons for the anomalous effects are not known, much of the observed behavior is attributed to the long times that polymers below their glass transition temperature take to adjust to changes in their condition. The slow internal relaxations of the polymer chains ensure that the material properties are history-dependent, and also allow both local inhomogeneities and differential swelling to occur. Two models are developed in this thesis with the intent of accounting for these effects in the diffusion process.

In Part I, a model is developed to account for both the history dependence of the glassy polymer, and the dual sorption which occurs when gas molecules are immobilized by the local heterogeneities. A preliminary study of a special case of this model is conducted, showing the existence of travelling wave solutions and using perturbation techniques to investigate the effect of generalized diffusion mechanisms on their form. An integral averaging method is used to estimate the penetrant front position.

In Part II, a model is developed for particle diffusion along with displacements in isotropic viscoelastic materials. The nonlinear dependence of the materials on the fluid concentration is taken into account, while pure displacements are assumed to remain in the range of linear viscoelasticity. A fairly general model is obtained for three-dimensional irrotational movements, with the development of the model being based on the assumptions of irreversible thermodynamics. With the help of some dimensional analysis, this model is simplified to a version which is proposed to be studied for Case II behavior.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Some aspects of wave propagation in thin elastic shells are considered. The governing equations are derived by a method which makes their relationship to the exact equations of linear elasticity quite clear. Finite wave propagation speeds are ensured by the inclusion of the appropriate physical effects.

The problem of a constant pressure front moving with constant velocity along a semi-infinite circular cylindrical shell is studied. The behavior of the solution immediately under the leading wave is found, as well as the short time solution behind the characteristic wavefronts. The main long time disturbance is found to travel with the velocity of very long longitudinal waves in a bar and an expression for this part of the solution is given.

When a constant moment is applied to the lip of an open spherical shell, there is an interesting effect due to the focusing of the waves. This phenomenon is studied and an expression is derived for the wavefront behavior for the first passage of the leading wave and its first reflection.

For the two problems mentioned, the method used involves reducing the governing partial differential equations to ordinary differential equations by means of a Laplace transform in time. The information sought is then extracted by doing the appropriate asymptotic expansion with the Laplace variable as parameter.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Unremitting waves and occasional storms bring dynamic forces to bear on the coast. Sediment flux results in various patterns of erosion and accretion, with an overwhelming majority (80 to 90 percent) of coastline in the eastern U.S. exhibiting net erosion in recent decades. Climate change threatens to increase the intensity of storms and raise sea level 18 to 59 centimeters over the next century. Following a lengthy tradition of economic models for natural resource management, this paper provides a dynamic optimization model for managing coastal erosion and explores the types of data necessary to employ the model for normative policy analysis. The model conceptualizes benefits of beach and dune sediments as service flows accruing to nearby residential property owners, local businesses, recreational beach users, and perhaps others. Benefits can also include improvements in habitat for beach- and dune-dependent plant and animal species. The costs of maintaining beach sediment in the presence of coastal erosion include expenditures on dredging, pumping, and placing sand on the beach to maintain width and height. Other costs can include negative impacts on the nearshore environment. Employing these constructs, an optimal control model is specified that provides a framework for identifying the conditions under which beach replenishment enhances economic welfare and an optimal schedule for replenishment can be derived under a constant sea level and erosion rate (short term) as well as an increasing sea level and erosion rate (long term). Under some simplifying assumptions, the conceptual framework can examine the time horizon of management responses under sea level rise, identifying the timing of shift to passive management (shoreline retreat) and exploring factors that influence this potential shift. (PDF contains 4 pages)