975 resultados para Teresa
Resumo:
European Regulation 1169/2011 requires producers of foods that contain refined vegetable oils to label the oil types. A novel rapid and staged methodology has been developed for the first time to identify common oil species in oil blends. The qualitative method consists of a combination of a Fourier Transform Infrared (FTIR) spectroscopy to profile the oils and fatty acid chromatographic analysis to confirm the composition of the oils when required. Calibration models and specific classification criteria were developed and all data were fused into a simple decision-making system. The single lab validation of the method demonstrated the very good performance (96% correct classification, 100% specificity, 4% false positive rate). Only a small fraction of the samples needed to be confirmed with the majority of oils identified rapidly using only the spectroscopic procedure. The results demonstrate the huge potential of the methodology for a wide range of oil authenticity work.
Resumo:
Using genome-wide data from 253,288 individuals, we identified 697 variants at genome-wide significance that together explained one-fifth of the heritability for adult height. By testing different numbers of variants in independent studies, we show that the most strongly associated 1/42,000, 1/43,700 and 1/49,500 SNPs explained 1/421%, 1/424% and 1/429% of phenotypic variance. Furthermore, all common variants together captured 60% of heritability. The 697 variants clustered in 423 loci were enriched for genes, pathways and tissue types known to be involved in growth and together implicated genes and pathways not highlighted in earlier efforts, such as signaling by fibroblast growth factors, WNT/I 2-catenin and chondroitin sulfate-related genes. We identified several genes and pathways not previously connected with human skeletal growth, including mTOR, osteoglycin and binding of hyaluronic acid. Our results indicate a genetic architecture for human height that is characterized by a very large but finite number (thousands) of causal variants.
Resumo:
Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms.
Resumo:
Obesity is heritable and predisposes to many diseases. To understand the genetic basis of obesity better, here we conduct a genome-wide association study and Metabochip meta-analysis of body mass index (BMI), a measure commonly used to define obesity and assess adiposity, in up to 339,224 individuals. This analysis identifies 97 BMI-associated loci (P < 5 × 10(-8)), 56 of which are novel. Five loci demonstrate clear evidence of several independent association signals, and many loci have significant effects on other metabolic phenotypes. The 97 loci account for ∼2.7% of BMI variation, and genome-wide estimates suggest that common variation accounts for >20% of BMI variation. Pathway analyses provide strong support for a role of the central nervous system in obesity susceptibility and implicate new genes and pathways, including those related to synaptic function, glutamate signalling, insulin secretion/action, energy metabolism, lipid biology and adipogenesis.
Resumo:
In line with the claim that regret plays a role in decision making, O’Connor, McCormack, and Feeney (2014) found that children who reported feeling sadder on discovering they had made a non-optimal choice were more likely to make a different choice next time round. We examined two issues of interpretation regarding this finding: whether the emotion measured was indeed regret, and whether it was the experience of this emotion rather than the ability to anticipate it that impacted on decision making. To address the first issue, we varied the degree to which children aged 6-7 were responsible for an outcome, assuming that responsibility is a necessary condition for regret. The second was addressed by examining whether children could accurately anticipate that they would feel worse on discovering they had made a non-optimal choice. Children were more likely to feel sad if they were responsible for the outcome; however even if they were not responsible, children were more likely than chance to report feeling sadder. Moreover, across all conditions feeling sadder was associated with making a better subsequent choice. In a separate task, we demonstrated that children of this age cannot accurately anticipate feeling sadder on discovering that they had not made the best choice. These findings suggest that although children may feel regret following a non-optimal choice, even if they were not responsible for an outcome they may experience another negative emotion such as frustration. Experiencing either of these emotions seems to be sufficient to support better decision making.
Resumo:
Goats’ milk is responsible for unique traditional products such as Halloumi cheese. The characteristics of Halloumi depend on the original features of the milk and on the conditions under which the milk has been produced such as feeding regime of the animals or region of production. Using a range of milk (33) and Halloumi (33) samples collected over a year from three different locations in Cyprus (A, Anogyra; K, Kofinou; P, Paphos), the potential for fingerprint VOC analysis as marker to authenticate Halloumi was investigated. This unique set up consists of an in-injector thermo desorption (VOCtrap needle) and a chromatofocusing system based on mass spectrometry (VOCscanner). The mass spectra of all the analyzed samples are treated by multivariate analysis (Principle component analysis and Discriminant functions analysis). Results showed that the highland area of product (P) is clearly identified in milks produced (discriminant score 67%). It is interesting to note that the higher similitude found on milks from regions “A” and “K” (with P being distractive; discriminant score 80%) are not ‘carried over’ on the cheeses (higher similitude between regions “A” and “P”, with “K” distinctive). Data have been broken down into three seasons. Similarly, the seasonality differences observed in different milks are not necessarily reported on the produced cheeses. This is expected due to the different VOC signatures developed in cheeses as part of the numerous biochemical changes during its elaboration compared to milk. VOC however it is an additional analytical tool that can aid in the identification of region origin in dairy products.
Resumo:
Vegetables of the Apiaceae plant family such as carrots, parsnip, celery and parsley,contain in minor quantities, a group of bioactive aliphatic C17-polyacetylenes (falcarinol,falcarindiol, falcarindiol-3- acetate). Recent studies have highlighted important biologicalfunctions in vitro and in vivo (animal studies) although the beneficial effect in humannutrition attributable to an increased in polyacetylenes diet are yet to be confirmed(Lund, 1990).Carrots not only contain relatively high polyacetylene content but also form a significantpart of many countries dietary habits. Carrots are also present in some ready-to-eat foodssuch as chilled freshly prepared salads, as part of the increasingly popular minimallyprocessed foods. Whereas the effect of conventional processing (boiling, vacuum processing) on the levels of polyacetylenes has been relatively well studied, the effect of minimal mechanical operations such as “peeling”, “mechanical cutting” and “chlorine washing” remains unknown.
Resumo:
Gastrointestinal hormones such as cholecystokinin (CCK), glucagon like peptide 1 (GLP-1), and peptide YY (PYY) play an important role in suppressing hunger and controlling food intake. These satiety hormones are secreted from enteroendocrine cells present throughout the intestinal tract. The intestinal secretin tumor cell line (STC-1) possesses many features of native intestinal enteroendocrine cells. As such, STC-1 cells are routinely used in screening platforms to identify foods or compounds that modulate secretion of gastrointestinal hormones in vitro. This chapter describes this intestinal cell model focussing on it’s applications, advantages and limitations. A general protocol is provided for challenging STC-1 cells with test compounds.
Resumo:
EU targets require nearly zero energy buildings (NZEB) by 2020. However few monitored examples exist of how NZEB has been achieved in practise in individual residential buildings. This paper provides an example of how a low-energy building (built in 2006), has achieved nearly zero energy heating through the addition of a solar domestic hot water and space heating system (“combi system”) with a Seasonal Thermal Energy Store (STES). The paper also presents a cumulative life cycle energy and cumulative life cycle carbon analysis for the installation based on the recorded DHW and space heating demand in addition to energy payback periods and net energy ratios. In addition, the carbon and energy analysis is carried out for four other heating system scenarios including hybrid solar thermal/PV systems in order to obtain the optimal system from a carbon efficiency perspective.
Resumo:
Children aged between 5 and 8 years freely intervened on a three-variable causal system, with their task being to discover whether it was a common-cause structure or one of two causal chains. From 6-7 years, children were able to use information from their interventions to correctly disambiguate the structure of a causal chain. We used a Bayesian model to examine children’s interventions on the system; this showed that with development children became more efficient in producing the interventions needed to disambiguate the causal structure and that the quality of interventions, as measured by their informativeness, improved developmentally. The latter measure was a significant predictor of children’s correct inferences about the causal structure. A second experiment showed that levels of performance were not reduced in a task in which children did not select and carry out interventions themselves, indicating no advantage for self-directed learning. However, children’s performance was not related to intervention quality in these circumstances, suggesting that children learn in a different way when they carry out interventions themselves.
Resumo:
OBJECTIVE: Ovarian cancer is the most lethal gynecological malignancy that affects women. Recent data suggests that the disease may originate in the fallopian fimbriae; however, the anatomical origin of ovarian carcinogenesis remains unclear. This is largely driven by our lack of knowledge regarding the structure and function of normal fimbriae and the relative paucity of models that accurately recapitulate the in vivo fallopian tube. Therefore, a human three-dimensional (3D) culture system was developed to examine the role of the fallopian fimbriae in serous tumorigenesis.
METHODS: Alginate matrix was utilized to support human fallopian fimbriae ex vivo. Fimbriae were cultured with factors hypothesized to contribute to carcinogenesis, namely; H2O2 (1mM) a mimetic of oxidative stress, insulin (5μg/ml) to stimulate glycolysis, and estradiol (E2, 10nM) which peaks before ovulation. Cultures were evaluated for changes in proliferation and p53 expression, criteria utilized to identify potential precursor lesions. Further, secretory factors were assessed after treatment with E2 to identify if steroid signaling induces a pro-tumorigenic microenvironment.
RESULTS: 3D fimbriae cultures maintained normal tissue architecture up to 7days, retaining both epithelial subtypes. Treatment of cultures with H2O2 or insulin significantly induced proliferation. However, p53 stabilization was unaffected by any particular treatment, although it was induced by ex vivo culturing. Moreover, E2-alone treatment significantly induced its canonical target PR and expression of IL8, a factor linked to poor outcome.
CONCLUSIONS: 3D alginate cultures of human fallopian fimbriae provide an important microphysiological model, which can be further utilized to investigate serous tumorigenesis originating from the fallopian tube.
Resumo:
Preclinical toxicity testing in animal models is a cornerstone of the drug development process, yet it is often unable to predict adverse effects and tolerability issues in human subjects. Species-specific responses to investigational drugs have led researchers to utilize human tissues and cells to better estimate human toxicity. Unfortunately, human cell-derived models are imperfect because toxicity is assessed in isolation, removed from the normal physiologic microenvironment. Microphysiological modeling often referred to as 'organ-on-a-chip' or 'human-on-a-chip' places human tissue into a microfluidic system that mimics the complexity of human in vivo physiology, thereby allowing for toxicity testing on several cell types, tissues, and organs within a more biologically relevant environment. Here we describe important concepts when developing a repro-on-a-chip model. The development of female and male reproductive microfluidic systems is critical to sex-based in vitro toxicity and drug testing. This review addresses the biological and physiological aspects of the male and female reproductive systems in vivo and what should be considered when designing a microphysiological human-on-a-chip model. Additionally, interactions between the reproductive tract and other systems are explored, focusing on the impact of factors and hormones produced by the reproductive tract and disease pathophysiology.