966 resultados para Solution Phase Compositions
Resumo:
A multiresidue gas chromatographic method for the determination of six fungicides (captan, chlorthalonil, folpet, iprodione, procymidone and vinclozolin) and one acaricide (dicofol) in still and fortified wines was developed. Solid-phase microextraction (SPME) was chosen for the extraction of the compounds from the studied matrices and tandem mass spectrometry (MS/MS) detection was used. The extraction consists in a solvent free and automated procedure and the detection is highly sensitive and selective. Good linearity was obtained with correlation coefficients of regression (R2) > 0.99 for all the compounds. Satisfactory results of repeatability and intermediate precision were obtained for most of the analytes (RSD < 20%). Recoveries from spiked wine ranged from 80.1% to 112.0%. Limits of quantification (LOQs) were considerably below the proposedmaximumresidue limits (MRLs) for these compounds in grapes and below the suggested limits for wine (MRLs/10), with the exception of captan.
Resumo:
The development of high performance monolithic RF front-ends requires innovative RF circuit design to make the best of a good technology. A fully differential approach is usually preferred, due to its well-known properties. Although the differential approach must be preserved inside the chip, there are cases where the input signal is single-ended such as RF image filters and IF filters in a RF receiver. In these situations, a stage able to convert single-ended into differential signals (balun) is needed. The most cited topology, which is capable of providing high gain, consists on a differential stage with one of the two inputs grounded. Unfortunately, this solution has some drawbacks when implemented monolithically. This work presents the design and simulated results of an innovative high-performance monolithic single to differential converter, which overcomes the limitations of the circuits.The integration of the monolithic active balun circuit with an LNA on a 0.18μm CMOS process is also reported. The circuits presented here are aimed at 802.11a. Section 2 describes the balun circuit and section 3 presents its performance when it is connected to a conventional single-ended LNA. Section 4 shows the simulated performance results focused at phase/amplitude balance and noise figure. Finally, the last section draws conclusions and future work.
Resumo:
Purpose: The sorption of sulfamethoxazole, a frequently detected pharmaceutical compound in the environment, onto walnut shells was evaluated. Methods: The sorption proprieties of the raw sorbent were chemically modified and two additional samples were obtained, respectively HCl and NaOH treated. Scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and thermogravimetric (TG/DTG) techniques were applied to investigate the effect of the chemical treatments on the shell surface morphology and chemistry. Sorption experiments to investigate the pH effect on the process were carried out between pH 2 and 8. Results: The chemical treatment did not substantially alter the structure of the sorbent (physical and textural characteristics) but modified the surface chemistry of the sorbent (acid–base properties, point of zero charge—pHpzc). The solution pH influences both the sorbent’s surface charge and sulfamethoxazole speciation. The best removal efficiencies were obtained for lower pH values where the neutral and cationic sulfamethoxazole forms are present in the solution. Langmuir and Freundlich isotherms were applied to the experimental adsorption data for sulfamethoxazole sorption at pH 2, 4, and 7 onto raw walnut shell. No statistical difference was found between the two models except for the pH 2 experimental data to which the Freundlich model fitted better. Conclusion: Sorption of sulfamethoxazole was found to be highly pH dependent in the entire pH range studied and for both raw and treated sorbent.
Resumo:
Gene expression of three antioxidant enzymes, Mn superoxide dismutase (MnSOD), Cu,Zn superoxide dismutase (Cu,ZnSOD), and glutathione reductase (GR) was investigated in stationary phase Saccharomyces cerevisiae during menadione-induced oxidative stress. Both GR and Cu,ZnSOD mRNA steady state levels increased, reaching a plateau at about 90 min exposure to menadione. GR mRNA induction was higher than that of Cu,ZnSOD (about 14-fold and 9-fold after 90 min, respectively). A different pattern of response was obtained for MnSOD mRNA, with a peak at about 15 min (about 8-fold higher) followed by a decrease to a plateau approximately 4-fold higher than the control value. However, these increased mRNA levels did not result in increased protein levels and activities of these enzymes. Furthermore, exposure to menadione decreased MnSOD activity to half its value, indicating that the enzyme is partially inactivated due to oxidative damage. Cu,ZnSOD protein levels were increased 2-fold, but MnSOD protein levels were unchanged after exposure to menadione in the presence of the proteolysis inhibitor phenylmethylsulfonyl fluoride. These results indicate that the rates of Cu,ZnSOD synthesis and proteolysis are increased, while the rates of MnSOD synthesis and proteolysis are unchanged by exposure to menadione. Also, the translational efficiency for both enzymes is probably decreased, since increases in protein levels when proteolysis is inhibited do not reflect the increases in mRNA levels. Our results indicate that oxidative stress modifies MnSOD, Cu,ZnSOD, and GR gene expression in a complex way, not only at the transcription level but also at the post-transcriptional, translational, and post-translational levels.
Resumo:
Mestrado em Engenharia Electrotécnica e de Computadores
Resumo:
In the literature, concepts of “polyneuropathy”, “peripheral neuropathy” and “neuropathy” are often mistakenly used as synonyms. Polyneuropathy is a specific term that refers to a relatively homogenous process that affects multiple peripheral nerves. Most of these tend to present as symmetric polyneuropathies that first manifest in the distal portions of the affected nerves. Many of these distal symmetric polyneuropathies are due to toxic-metabolic causes such as alcohol abuse and diabetes mellitus. Other distal symmetric polyneuropathies may result from an overproduction of substances that result in nerve pathology such as is observed in anti-MAG neuropathy and monoclonal gammopathy of undetermined significance. Other “overproduction” disorders are hereditary such as noted in the Portuguese type of familial amyloid polyneuropathy (FAP). FAP is a manifestation of a group of hereditary amyloidoses; an autosomal dominant, multisystemic disorder wherein the mutant amyloid precursor, transthyretin, is produced in excess primarily by the liver. The liver accounts for approximately 98% of all transthyretin production. FAP is confirmed by detecting a transthyretin variant with a methionine for valine substitution at position 30 [TTR (Met30)]. Familial Amyloidotic Polyneuropathy (FAP) – Portuguese type was first described by a Portuguese neurologist, Corino de Andrade in 1939 and published in 1951. Most persons with this disorder are descended from Portuguese sailors who sired offspring in various locations, primarily in Sweden, Japan and Mallorca. Their descendants emigrated worldwide such that this disorder has been reported in other countries as well. More than 2000 symptomatic cases have been reported in Portugal. FAP progresses rapidly with an average time course from symptom onset to multi-organ involvement and death between ten and twenty years. Treatments directed at removing this aberrant protein such as plasmapheresis and immunoadsorption proved to be unsuccessful. Liver transplantation has been the only effective solution as evidenced by almost 2000 liver transplants performed worldwide. A therapy for FAP with a novel agent, “Tafamidis” has shown some promise in ongoing phase III clinical trials. It is well recognized that regular physical activity of moderate intensity has a positive effect on physical fitness as gauged by body composition, aerobic capacity, muscular strength and endurance and flexibility. Physical fitness has been reported to result in the reduction of symptoms and lesser impairment when performing activities of daily living. Exercise has been advocated as part of a comprehensive approach to the treatment of chronic diseases. Therefore, this chapter concludes with a discussion of the role of exercise training on FAP.
Resumo:
Mestrado em Engenharia Química. Ramo de Optimização Energética na Indústria Química
Resumo:
Solution enthalpies of 1,4-dioxane have been obtained in 15 protic and aprotic solvents at 298.15 K. Breaking the overall process through the use of Solomonov's methodology the cavity term was calculated and interaction enthalpies (Delta H-int) were determined. Main factors involved in the interaction enthalpy have been identified and quantified using a QSPR approach based on the TAKA model equation. The relevant descriptors were found to be pi* and beta, which showed, respectively, exothermic and endothermic contributions. The magnitude of pi* coefficient points toward non-specific solute-solvent interactions playing a major role in the solution process. The positive value of the beta coefficient reflects the endothermic character of the solvents' hydrogen bond acceptor (HBA) basicity contribution, indicating that solvent molecules engaged in hydrogen bonding preferentially interact with each other rather than with 1,4-dioxane. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
O presente trabalho teve como principais objectivos, estudar e optimizar o processo de tratamento do efluente proveniente das máquinas da unidade Cold-press da linha de produção da Empresa Swedwood, caracterizar a solução límpida obtida no tratamento e estudar a sua integração no processo, e por fim caracterizar o resíduo de pasta de cola obtido no tratamento e estudar a possível valorização energética deste resíduo. Após caracterização inicial do efluente e de acordo com os resultados de um estudo prévio solicitado pela Empresa Swedwood a uma empresa externa, decidiu-se iniciar o estudo de tratabilidade do efluente pelo processo físico-químico a coagulação/floculação. No processo de coagulação/floculação estudou-se a aplicabilidade, através de ensaios Jar-test, dos diferentes agentes de coagulação/floculação: a soda cáustica, a cal, o cloreto férrico e o sulfato de alumínio. Os melhores resultados neste processo foram obtidos com a adição de uma dose de cal de 500 mg/Lefluente, seguida da adição de 400 mg/Lefluente de sulfato de alumínio. Contudo, após este tratamento o clarificado obtido não possuía as características necessárias para a sua reintrodução no processo fabril nem para a sua descarga em meio hídrico. Deste modo procedeu-se ao estudo de tratamentos complementares. Nesta segunda fases de estudo testaram-se os seguintes os tratamentos: a oxidação química por Reagente de Fenton, o tratamento biológico por SBR (sequencing batch reactor) e o leito percolador. Da análise dos resultados obtidos nos diferentes tratamentos conclui-se que o tratamento mais eficaz foi o tratamento biológico por SBR com adição de carvão activado. Prevê-se que no final do processo de tratamento o clarificado obtido possa ser descarregado em meio hídrico ou reintroduzido no processo. Como o estudo apenas foi desenvolvido à escala laboratorial, seria útil poder validar os resultados numa escala piloto antes da sua implementação industrial. A partir dos resultados do estudo experimental, procedeu-se ao dimensionamento de uma unidade de tratamento físico-químico e biológico à escala industrial para o tratamento de 20 m3 de efluente produzido na fábrica, numa semana. Dimensionou-se ainda a unidade (leito de secagem) para tratamento das lamas produzidas. Na unidade de tratamento físico-químico (coagulação/floculação) os decantadores estáticos devem possuir o volume útil de 4,8 m3. Sendo necessários semanalmente 36 L da suspensão de cal (Neutrolac 300) e 12,3 L da solução de sulfato de alumínio a 8,3%. Os tanques de armazenamento destes compostos devem possuir 43,2 litros e 96 litros, respectivamente. Nesta unidade estimou-se que são produzidos diariamente 1,4 m3 de lamas. Na unidade de tratamento biológico o reactor biológico deve possuir um volume útil de 6 m3. Para que este processo seja eficaz é necessário fornecer diariamente 2,1 kg de oxigénio. Estima-se que neste processo será necessário efectuar a purga de 325 litros de lamas semanalmente. No final da purga repõe-se o carvão activado, que poderá ser arrastado juntamente com as lamas, adicionando-se 100 mg de carvão por litro de licor misto. De acordo com o volume de lamas produzidos em ambos os tratamentos a área mínima necessária para o leito de secagem é de cerca de 27 m2. A análise económica efectuada mostra que a aquisição do equipamento tem o custo de 22.079,50 euros, o custo dos reagentes necessários neste processo para um ano de funcionamento tem um custo total de 508,50 euros e as necessidades energéticas de 2.008,45 euros.
Resumo:
There is an interest to create zinc/tin alloys to replace cadmium as a corrosion protective coating material. Existing aqueous electroplating systems for these alloys are commercially available but have several limitations. Dangerous and highly toxic complexing agents are uses e.g. cyanides. To overcome these problems, ionic liquids could provide a solution to obtain an alloy containing 20 to 30% of zinc. Ionic liquids (IL’s) often have wider electrochemical windows which allow the deposition of e.g. refractive metals that can not be deposited from aqueous solutions. In IL’s it is often not necessary to add complexing agents. The Zn/Sn alloy deposition from IL’s is therefore a promising application for the plating industry. Nevertheless, there are some issues with this alternative for aqueous systems. The degradation of the organic components, the control of the concentration of two metals and the risk of a two phase deposition instead of an alloy had to be overcome first. It is the main purpose of this thesis to obtain a Zn/Sn alloy with 20% zinc using IL’s as an electrolyte. First a separate study was performed on both the zinc and the tin deposition. Afterwards, an attempt to deposit a Zn/Sn alloy was made. An introduction to a study about the electrodeposition of refractive metals concludes this work. It initiated the research for oxygen-free IL’s to deposit molybdenum or tungsten. Several parameters (temperature, metal source and concentration, organic complexing agents,…) were optimized for both the zinc, tin and zinc/tin deposition. Experiments were performed both in a parallel plate cell and a Hull cell, so as to investigate the effect of current density as well. Ethaline200 was selected as electrolyte. As substrate, brass and iron were selected, while as anode a plate of the metal to deposit was chosen, tin for the alloy. The best efficiencies were always obtained on brass; however the iron substrate resulted in the best depositions. A concentration of 0.27M ZnCl2, 0.07M SnCl2 with 0.015M of K3-HEDTA as complexant resulted in a deposition containing the desired alloy with the amount of 20% zinc and 80% tin with good appearance. Refractory metals as molybdenum and tungsten cannot be electrodeposited from aqueous solutions without forming a co-deposition with Ni, Co or Fe. Here, IL’s could again provide a solution. A first requirement is the dissolution of a metal source. MoO3 could be suitable, however there are doubts about using oxides. Oxygen-free IL’s were sought for. A first attempt was the combination of ZnCl2 with chlormequat (CCC), which gave liquids below 150°C in molar ratios of 2 : 1 and 3 : 1. Unfortuna tely, MoO3 didn’t dissolve in these IL’s. Another route to design oxygen-free IL’s was the synthesis of quaternary ammonium salts. None of the methods used, proved viable as reaction time was long and resulted in very low yields. Therefore, no sufficient quantities were obtained to perform the possible electrochemical behavior of refractive metals.
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Química e Biológica
Resumo:
The presented work was conducted within the Dissertation / Internship, branch of Environmental Protection Technology, associated to the Master thesis in Chemical Engineering by the Instituto Superior de Engenharia do Porto and it was developed in the Aquatest a.s, headquartered in Prague, in Czech Republic. The ore mining exploitation in the Czech Republic began in the thirteenth century, and has been extended until the twentieth century, being now evident the consequences of the intensive extraction which includes contamination of soil and sub-soil by high concentrations of heavy metals. The mountain region of Zlaté Hory was chosen for the implementation of the remediation project, which consisted in the construction of three cells (tanks), the first to raise the pH, the second for the sedimentation of the formed precipitates and a third to increase the process efficiency in order to reduce high concentrations of metals, with special emphasis on iron, manganese and sulfates. This project was initiated in 2005, being pioneer in this country and is still ongoing due to the complex chemical and biological phenomenon’s inherent to the system. At the site where the project was implemented, there is a natural lagoon, thereby enabling a comparative study of the two systems (natural and artificial) regarding the efficiency of both in the reduction/ removal of the referred pollutants. The study aimed to assist and cooperate in the ongoing investigation at the company Aquatest, in terms of field work conducted in Zlaté Hory and in terms of research methodologies used in it. Thereby, it was carried out a survey and analysis of available data from 2005 to 2008, being complemented by the treatment of new data from 2009 to 2010. Moreover, a theoretical study of the chemical and biological processes that occurs in both systems was performed. Regarding the field work, an active participation in the collection and in situ sample analyzing of water and soil from the natural pond has been attained, with the supervision of Engineer, Irena Šupiková. Laboratory analysis of water and soil were carried out by laboratory technicians. It was found that the natural lagoon is more efficient in reducing iron and manganese, being obtained removal percentages of 100%. The artificial lagoon had a removal percentage of 90% and 33% for iron and manganese respectively. Despite the minor efficiency of the constructed wetland, it must be pointed out that this system was designed for the treatment and consequent reduction of iron. In this context, it can conclude that the main goal has been achieved. In the case of sulphates, the removal optimization is yet a goal to be achieved not only in the Czech Republic but also in other places where this type of contamination persists. In fact, in the natural lagoon and in the constructed wetland, removal efficiencies of 45% and 7% were obtained respectively. It has been speculated that the water at the entrance of both systems has different sources. The analysis of the collected data shows at the entrance of the natural pond, a concentration of 4.6 mg/L of total iron, 14.6 mg/L of manganese and 951 mg/L of sulphates. In the artificial pond, the concentrations are 27.7 mg/L, 8.1 mg/L and 382 mg/L respectively for iron, manganese and sulphates. During 2010 the investigation has been expanded. The study of soil samples has started in order to observe and evaluate the contribution of bacteria in the removal of heavy metals being in its early phase. Summarizing, this technology has revealed to be an interesting solution, since in addition to substantially reduce the mentioned contaminants, mostly iron, it combines the low cost of implementation with an reduced maintenance, and it can also be installed in recreation parks, providing habitats for plants and birds.
Resumo:
A constante e sistemática subida de preço dos combustíveis fósseis e as contínuas preocupações com o meio ambiente determinaram a procura de soluções ambientalmente sustentáveis. O biodiesel surge, então, como uma alternativa para essa problemática, bem como uma solução para resíduos líquidos e gordurosos produzidos pelo ser humano. A produção de biodiesel tem sido alvo de extensa atenção nos últimos anos, pois trata-se de um combustível biodegradável e não poluente. A produção de biodiesel pelo processo de transesterificação usando álcoois de cadeia curta e catalisadores químicos, nomeadamente alcalinos, tem sido aceite industrialmente devido à sua elevada conversão. Recentemente, a transesterificação enzimática tem ganho adeptos. No entanto, o custo da enzima permanece uma barreira para a sua aplicação em grande escala. O presente trabalho visa a produção de biodiesel por transesterificação enzimática a partir de óleo residual de origem vegetal. O álcool usado foi o etanol, em substituição do metanol usado convencionalmente na catálise homogénea, pois a atividade da enzima é inibida pela presença deste último. As maiores dificuldades apresentadas na etanólise residem na separação das fases (Glicerol e Biodiesel) após a reação bem como na menor velocidade de reação. Para ajudar a colmatar esta desvantagem foi estudada a influência de dois cosolventes: o hexano e o hexanol, na proporção de 20% (v/v). Após a escolha do co-solvente que permite obter melhor rendimento (o hexano), foi elaborado um planeamento fatorial no qual se estudou a influência de três variáveis na produção de biodiesel por catálise enzimática com etanol e co-solventes: a razão molar óleo/álcool (1:8, 1:6 e 1:4), a quantidade de co-solvente adicionado (30, 20 e 10%, v/v) e o tempo de reação (48, 36 e 24h). A avaliação do processo foi inicialmente seguida pelo rendimento da reação, a fim de identificar as melhores condições, sendo substituída posteriormente pela quantificação do teor de ésteres por cromatografia em fase gasosa. O biodiesel com teor de ésteres mais elevado foi produzido nas condições correspondentes a uma razão molar óleo:álcool de 1:4, com 5g de Lipozyme TL IM como catalisador, 10% co-solvente (hexano, v/v), à temperatura de 35 ºC durante 24h. O rendimento do biodiesel produzido sob estas condições foi de 73,3%, traduzido em 64,7% de teor de ésteres etílicos. Contudo o rendimento mais elevado que se obteve foi de 99,7%, para uma razão óleo/álcool de 1:8, 30% de co-solvente (hexano, v/v), reação durante 48h a 35 ºC, obtendo-se apenas 46,1% de ésteres. Por fim, a qualidade do biodiesel foi ainda avaliada, de acordo com as especificações da norma EN 14214, através das determinações de densidade, viscosidade, ponto de inflamação, teor de água, corrosão ao cobre, índice de acidez, índice de iodo, teor de sódio (Na+) e potássio (K+), CFPP e poder calorífico. Na Europa, os ésteres etílicos não têm, neste momento, norma que os regule quanto à classificação da qualidade de biodiesel. Contudo, o biodiesel produzido foi analisado de acordo com a norma europeia EN14214, norma esta que regula a qualidade dos ésteres metílicos, sendo possível concluir que nenhum dos parâmetros avaliados se encontra em conformidade com a mesma.
Resumo:
Dissertação de Mestrado, Ciências Biomédicas, 18 de Março de 2016, Universidade dos Açores.
Resumo:
The phase behaviour of a number of N-alkylimidazolium salts was studied using polarizing optical microscopy, differential scanning calorimetry and X-ray diffraction. Two of these compounds exhibit lamellar mesophases at temperatures above 50 degrees C. In these systems, the liquid crystalline behaviour may be induced at room temperature by shear. Sheared films of these materials, observed between crossed polarisers, have a morphology that is typical of (wet) liquid foams: they partition into dark domains separated by brighter (birefringent) walls, which are approximately arcs of circle and meet at "Plateau borders" with three or more sides. Where walls meet three at a time, they do so at approximately 120 degrees angles. These patterns coarsen with time and both T1 and T2 processes have been observed, as in foams. The time evolution of domains is also consistent with von Neumann's law. We conjecture that the bright walls are regions of high concentration of defects produced by shear, and that the system is dominated by the interfacial tension between these walls and the uniform domains. The control of self-organised monodomains, as observed in these systems, is expected to play an important role in potential applications.