968 resultados para Semilinear Schrodinger Equation
Resumo:
tbd
Resumo:
L'equazione di Klein-Gordon descrive una ampia varietà di fenomeni fisici come la propagazione delle onde in Meccanica dei Continui ed il comportamento delle particelle spinless in Meccanica Quantistica Relativistica. Recentemente, la forma dissipativa di questa equazione si è rivelata essere una legge di evoluzione fondamentale in alcuni modelli cosmologici, in particolare nell'ambito dei cosiddetti modelli di k-inflazione in presenza di campi tachionici. L'obiettivo di questo lavoro consiste nell'analizzare gli effetti del parametro dissipativo sulla dispersione nelle soluzioni dell'equazione d'onda. Saranno inoltre studiati alcuni tipici problemi al contorno di particolare interesse cosmologico per mezzo di grafici corrispondenti alle soluzioni fondamentali (Funzioni di Green).
Resumo:
It is well known that many realistic mathematical models of biological systems, such as cell growth, cellular development and differentiation, gene expression, gene regulatory networks, enzyme cascades, synaptic plasticity, aging and population growth need to include stochasticity. These systems are not isolated, but rather subject to intrinsic and extrinsic fluctuations, which leads to a quasi equilibrium state (homeostasis). The natural framework is provided by Markov processes and the Master equation (ME) describes the temporal evolution of the probability of each state, specified by the number of units of each species. The ME is a relevant tool for modeling realistic biological systems and allow also to explore the behavior of open systems. These systems may exhibit not only the classical thermodynamic equilibrium states but also the nonequilibrium steady states (NESS). This thesis deals with biological problems that can be treat with the Master equation and also with its thermodynamic consequences. It is organized into six chapters with four new scientific works, which are grouped in two parts: (1) Biological applications of the Master equation: deals with the stochastic properties of a toggle switch, involving a protein compound and a miRNA cluster, known to control the eukaryotic cell cycle and possibly involved in oncogenesis and with the propose of a one parameter family of master equations for the evolution of a population having the logistic equation as mean field limit. (2) Nonequilibrium thermodynamics in terms of the Master equation: where we study the dynamical role of chemical fluxes that characterize the NESS of a chemical network and we propose a one parameter parametrization of BCM learning, that was originally proposed to describe plasticity processes, to study the differences between systems in DB and NESS.
Resumo:
In der vorliegenden Arbeit wird die Theorie der analytischen zweiten Ableitungen für die EOMIP-CCSD-Methode formuliert sowie die durchgeführte Implementierung im Quantenchemieprogramm CFOUR beschrieben. Diese Ableitungen sind von Bedeutung bei der Bestimmung statischer Polarisierbarkeiten und harmonischer Schwingungsfrequenzen und in dieser Arbeit wird die Genauigkeit des EOMIP-CCSD-Ansatzes bei der Berechnung dieser Eigenschaften für verschiedene radikalische Systeme untersucht. Des Weiteren können mit Hilfe der ersten und zweiten Ableitungen vibronische Kopplungsparameter berechnet werden, welche zur Simulation von Molekülspektren in Kombination mit dem Köppel-Domcke-Cederbaum (KDC)-Modell - in der Arbeit am Beispiel des Formyloxyl (HCO2)-Radikals demonstriert - benötigt werden.rnrnDer konzeptionell einfache EOMIP-CC-Ansatz wurde gewählt, da hier die Wellenfunktion eines Radikalsystems ausgehend von einem stabilen geschlossenschaligen Zustand durch die Entfernung eines Elektrons gebildet wird und somit die Problematik der Symmetriebrechung umgangen werden kann. Im Rahmen der Implementierung wurden neue Programmteile zur Lösung der erforderlichen Gleichungen für die gestörten EOMIP-CC-Amplituden und die gestörten Lagrange-Multiplikatoren zeta zum Quantenchemieprogramm CFOUR hinzugefügt. Die unter Verwendung des Programms bestimmten Eigenschaften werden hinsichtlich ihrer Leistungsfähigkeit im Vergleich zu etablierten Methoden wie z.B. CCSD(T) untersucht. Bei der Berechnung von Polarisierbarkeiten und harmonischen Schwingungsfrequenzen liefert die EOMIP-CCSD-Theorie meist gute Resultate, welche nur wenig von den CCSD(T)-Ergebnissen abweichen. Einzig bei der Betrachtung von Radikalen, für die die entsprechenden Anionen nicht stabil sind (z.B. NH2⁻ und CH3⁻), liefert der EOMIP-CCSD-Ansatz aufgrund methodischer Nachteile keine aussagekräftige Beschreibung. rnrnDie Ableitungen der EOMIP-CCSD-Energie lassen sich auch zur Simulation vibronischer Kopplungen innerhalb des KDC-Modells einsetzen.rnZur Kopplung verschiedener radikalischer Zustände in einem solchen Modellpotential spielen vor allem die Ableitungen von Übergangsmatrixelementen eine wichtige Rolle. Diese sogenannten Kopplungskonstanten können in der EOMIP-CC-Theorie besonders leicht definiert und berechnet werden. Bei der Betrachtung des Photoelektronenspektrums von HCO2⁻ werden zwei Alternativen untersucht: Die vertikale Bestimmung an der Gleichgewichtsgeometrie des HCO2⁻-Anions und die Ermittlung adiabatischer Kraftkonstanten an den Gleichgewichtsgeometrien des Radikals. Lediglich das adiabatische Modell liefert bei Beschränkung auf harmonische Kraftkonstanten eine qualitativ sinnvolle Beschreibung des Spektrums. Erweitert man beide Modelle um kubische und quartische Kraftkonstanten, so nähern sich diese einander an und ermöglichen eine vollständige Zuordnung des gemessenen Spektrums innerhalb der ersten 1500 cm⁻¹. Die adiabatische Darstellung erreicht dabei nahezu quantitative Genauigkeit.
Resumo:
In questa trattazione si studia la regolarità delle soluzioni viscose plurisubarmoniche dell’equazione di Monge-Ampère complessa. Si tratta di un’equazione alle derivate parziali del secondo ordine completamente non lineare il cui termine del secondo ordine è il determinante della matrice hessiana complessa di una funzione incognita a valori reali u. Il principale risultato della tesi è un nuovo controesempio di tipo Pogorelov per questa equazione. Si prova cioè l’esistenza di soluzioni viscose plurisubarmoniche e non classiche per un equazione di Monge-Ampère complessa.
Resumo:
Cognitive impairments are currently regarded as important determinants of functional domains and are promising treatment goals in schizophrenia. Nevertheless, the exact nature of the interdependent relationship between neurocognition and social cognition as well as the relative contribution of each of these factors to adequate functioning remains unclear. The purpose of this article is to systematically review the findings and methodology of studies that have investigated social cognition as a mediator variable between neurocognitive performance and functional outcome in schizophrenia. Moreover, we carried out a study to evaluate this mediation hypothesis by the means of structural equation modeling in a large sample of 148 schizophrenia patients. The review comprised 15 studies. All but one study provided evidence for the mediating role of social cognition both in cross-sectional and in longitudinal designs. Other variables like motivation and social competence additionally mediated the relationship between social cognition and functional outcome. The mean effect size of the indirect effect was 0.20. However, social cognitive domains were differentially effective mediators. On average, 25% of the variance in functional outcome could be explained in the mediation model. The results of our own statistical analysis are in line with these conclusions: Social cognition mediated a significant indirect relationship between neurocognition and functional outcome. These results suggest that research should focus on differential mediation pathways. Future studies should also consider the interaction with other prognostic factors, additional mediators, and moderators in order to increase the predictive power and to target those factors relevant for optimizing therapy effects.
Resumo:
Investigators interested in whether a disease aggregates in families often collect case-control family data, which consist of disease status and covariate information for families selected via case or control probands. Here, we focus on the use of case-control family data to investigate the relative contributions to the disease of additive genetic effects (A), shared family environment (C), and unique environment (E). To this end, we describe a ACE model for binary family data and then introduce an approach to fitting the model to case-control family data. The structural equation model, which has been described previously, combines a general-family extension of the classic ACE twin model with a (possibly covariate-specific) liability-threshold model for binary outcomes. Our likelihood-based approach to fitting involves conditioning on the proband’s disease status, as well as setting prevalence equal to a pre-specified value that can be estimated from the data themselves if necessary. Simulation experiments suggest that our approach to fitting yields approximately unbiased estimates of the A, C, and E variance components, provided that certain commonly-made assumptions hold. These assumptions include: the usual assumptions for the classic ACE and liability-threshold models; assumptions about shared family environment for relative pairs; and assumptions about the case-control family sampling, including single ascertainment. When our approach is used to fit the ACE model to Austrian case-control family data on depression, the resulting estimate of heritability is very similar to those from previous analyses of twin data.