971 resultados para Round Robin Database Measurement Archive
The measurement of particle size distribution using the Single Particle Optical Sizing (SPOS) method
Resumo:
This study is concerned with the measurement of total factor prodnctivity in the marine fishing industries in general and in the Pacific coast trawl fishery in particular. The study is divided into two parts. Part I contains suitable empirical and introductory theoretical material for the examination of productivity in the Pacific coast trawl Deet. It is self-contained, and contains the basic formulae, empirical results, and discussion. Because the economic theory of index numbers and productivity is constantly evolving and is widely scattered throughout the economics literature, Part D draws together the theoretical literature into one place to allow ready access for readers interested in more details. The major methodological focus of the study is upon the type of economic index number that is most appropriate for use by economists with the National Marine Fisheries Service. This study recommends that the following types of economic index numbers be used: chain rather than fIxed base; bilateral rather than multilateral; one of the class of superlative indices, such as the Tornqvist or Fisher Ideal. (PDF file contains 40 pages.)
Resumo:
A three day workshop on turbidity measurements was held at the Hawaii Institute of Marine Biology from August 3 1 to September 2, 2005. The workshop was attended by 30 participants from industry, coastal management agencies, and academic institutions. All groups recognized common issues regarding the definition of turbidity, limitations of consistent calibration, and the large variety of instrumentation that nominally measure "turbidity." The major recommendations, in order of importance for the coastal monitoring community are listed below: 1. The community of users in coastal ecosystems should tighten instrument design configurations to minimize inter-instrument variability, choosing a set of specifications that are best suited for coastal waters. The IS0 7027 design standard is not tight enough. Advice on these design criteria should be solicited through the ASTM as well as Federal and State regulatory agencies representing the majority of turbidity sensor end users. Parties interested in making turbidity measurements in coastal waters should develop design specifications for these water types rather than relying on design standards made for the analysis of drinking water. 2. The coastal observing groups should assemble a community database relating output of specific sensors to different environmental parameters, so that the entire community of users can benefit from shared information. This would include an unbiased, parallel study of different turbidity sensors, employing a variety of designs and configuration in the broadest range of coastal environments. 3. Turbidity should be used as a measure of relative change in water quality rather than an absolute measure of water quality. Thus, this is a recommendation for managers to develop their own local calibrations. See next recommendation. 4. If the end user specifically wants to use a turbidity sensor to measure a specific water quality parameter such as suspended particle concentration, then direct measurement of that water quality parameter is necessary to correlate with 'turbidity1 for a particular environment. These correlations, however, will be specific to the environment in which they are measured. This works because there are many environments in which water composition is relatively stable but varies in magnitude or concentration. (pdf contains 22 pages)
Resumo:
The Alliance for Coastal Technology (ACT) convened a workshop on the in situ measurement of dissolved inorganic carbon species in natural waters in Honolulu, Hawaii, on February 16, 17, and 18, 2005. The workshop was designed to summarize existing technologies for measuring the abundance and speciation of dissolved inorganic carbon and to make strategic recommendations for future development and application of these technologies to coastal research and management. The workshop was not focused on any specific technology, however, most of the attention of the workshop was on in situ pC02 sensors given their recent development and use on moorings for the measurement of global carbon fluxes. In addition, the problems and limitations arising from the long-term deployment of systems designed for the measurement of pH, total dissolved inorganic carbon (DIC), and total alkalinity (TA) were discussed. Participants included researchers involved in carbon biogeochemistry, industry representatives, and coastal resource managers. The primary questions asked during the workshop were: I. What are the major impediments to transform presently used shipboard pC02 measurement systems for use on cost-eficient moorings? 2. What are the major technical hurdles for the in situ measurement of TA and DIC? 3. What specific information do we need to coordinate efforts for proof of concept' testing of existing and new technologies, inter-calibration of those technologies, better software development, and more precise knowledge quantzjjing the geochemistry of dissolved inoeanic carbon species in order to develop an observing system for dissolved inorganic carbon? Based on the discussion resulting from these three questions, the following statements were made: Statement No. 1 Cost-effective, self-contained technologies for making long-term, accurate measurements of the partial pressure of C02 gas in water already exist and at present are ready for deployment on moorings in coastal observing systems. Statement No. 2 Cost-effective, self-contained systems for the measurement of pH, TA, and DIC are still needed to both fully define the carbonate chemistry of coastal waters and the fluxes of carbon between major biogeochemical compartments (e.g., air-sea, shelf-slope, water column-sediment, etc.). (pdf contains 23 pages)
Resumo:
Fish muscle as food is to be seen as highly perishable. In unfrozen fish, freshness is considered the most important quality attribute. It is well known that there are several biochemical changes that can affect dramatically the texture of fish muscle. Immediately after death the fish texture is soft and elastic. In connection with rigor mortis the fish texture changes markedly. It becomes harder during rigor and after its resolution it becomes softer. This softness increases due to proteolysis during further storage at refrigerated conditions. Texture is a very important indicator for evaluating the quality of fish. Barroso et al. (1997) have recently reviewed mechanical methods in use for texture measurements on fresh fish. Further reviews on texture measurement performed on fish muscle were recently published underlining the importance of texture as quality attribute (Hyldig et al 2001, Coppes et al. 2002). The position along the fish can influence the results and was investigated by several authors (Sigurgis-ladottir et. al. 1999). Different methods have been compared for their ability to differentiate between recently killed salmon and salmon stored on ice for up to 24 days (Veland et al. 1999).