973 resultados para No-hacer
Resumo:
Una vez realizado el análisis de contenido, en el que el foco de atención es el tema matemático que se va a enseñar, pasamos a realizar otro análisis en el que el foco de atención es el aprendizaje del estudiante. Se trata de hacer una descripción de las expectativas del profesor sobre lo que se espera que el alumno aprenda y sobre el modo en que se va a desarrollar ese aprendizaje. Esta es una problemática muy compleja que puede enfocarse desde muchos puntos de vista. Aquí haremos una aproximación concreta que pretende dar respuesta a las siguientes cuestiones: (a) establecer las expectativas de aprendizaje que se desean desarrollar sobre el tema matemático: determinar a qué competencias se quiere contribuir, seleccionar los objetivos de aprendizaje que se pretenden desarrollar e identificar qué capacidades de los estudiantes se ponen en juego; (b) determinar las limitaciones al aprendizaje que surgen en el tema matemático: qué dificultades y errores van a surgir en el proceso de aprendizaje; y (c) expresar hipótesis sobre cómo se puede desarrollar el aprendizaje al abordar tareas matemáticas: especificar, mediante caminos de aprendizaje, conjeturas sobre el proceso que seguirán los alumnos al resolver tareas matemáticas. Las cuestiones anteriores se vertebran en torno a los siguientes organizadores del currículo que intervienen en el análisis cognitivo: expectativas de aprendizaje (competencias, objetivos y capacidades), errores y dificultades, y caminos de aprendizaje.
Resumo:
En los problemas clásicos, la proporcionalidad aparece como una relación exacta en el sentido que compara magnitudes bien determinadas y con medidas que se suponen conocidas exactamente. Es la manera como opera la llamada "regla de tres" de la escuela elemental. Así, en el movimiento uniforme, el espacio recorrido durante el tiempo fijo, es proporcional a la velocidad y para una velocidad determinada, es proporcional al tiempo. También e precio de una determinada mercadería es proporcional a la medida de la misma (longitud, si se trata de telas o alambres; peso, si se trata de azúcar patatas; volumen, si de líquidos como el vino o aceite). En las clases de nivel medio conviene poner abundantes ejemplos de magnitudes proporcionales, como las que acabamos de mencionar y otros de los que no lo son. En general, es conveniente hacer la representación gráfica de una magnitud en función de la otra, para ver si es o no una recta.
Resumo:
El objetivo de este clip es que la próxima vez que le pregunten: ¿para que sirven las raíces cuadradas? usted pueda responder: para hacer las raciones de espaguetis… y otras cosas. En el variado y apetitoso mundo de la pasta, los “espaguetis” han alcanzado enorme popularidad. Ya hace años la despampanante actriz italiana Sophia Loren dijo con orgullo aquello de que: todo lo que ve lo debo a los espaguetis. Saber comer espaguetis con dignidad (sin mancharse) no es tarea simple pues la cuchara debe facilitar el enrollado de la pasta en el tenedor inclinado y luego esta debe emprender el largo viaje que va del plato a la boca del comensal, sobrevolando el vestido.
Resumo:
Es un hecho indudable que vivimos en una sociedad que nos requiere, cada vez más, interactuar con una serie de códigos numéricos. En este trabajo se pretende analizar las características de algunos de estos códigos -DNI-NIF, códigos de barras, códigos ISBN, códigos ISSN, códigos de tarjetas de crédito, de cuentas bancarias, de cheques bancarios- haciendo especial hincapié en los algoritmos que permiten calcular su carácter de control a partir de los demás elementos del código y en la forma que tienen estos códigos de hacer frente a los errores más frecuentes en la transmisión de los mismos. Además se estudian sus posibilidades didácticas y se ofrece una aplicación informática al aula de secundaria a través de una WebQuest, creada por el autor, sobre el tema.
Resumo:
Este clip va dedicado a la esperanza. Por supuesto no se trata de interferir en la política de la comunidad de Madrid, ni de hacer una reflexión sobre virtudes cristianas, ni de reconocer en público que esta palabra forma parte de nuestros sentimientos más nobles cuando estamos dando clase. Lo que nos proponemos es hacer referencia a tres casos muy concretos de esperanza matemática.
Resumo:
Cuantas escalas matemáticas coexisten en una vivienda normal? A esta pregunta la mayoría de ciudadanos responderían con una rotunda respuesta (¡Ninguna!) seguida de una leve sonrisa (En mi casa no entran las matemáticas). El objetivo de este clip es hacer ver la agobiante cantidad de escalas con las cuales todos (incluidos los de letras) convivimos. La exposición tendrá pues forma de carta dirigida al vecino de turno.
Resumo:
La nueva dirección de SUMA nos pregunta qué línea va a seguir “Desde la Historia”. Las líneas se hacen andando, que diría Machado, y esta respuesta es no sólo cierta en general sino obligada en nuestro caso para esta sección de la revista. No somos especialistas en historia de las matemáticas, sólo simples aficionados, y ello nos impide concretar mucho los contenidos. Sí somos especialistas otra cosa es que seamos buenos especialistas en animar tertulias sobre matemáticas para adolescentes y ello será, junto con lo que leamos y especulemos, la fuente de nuestra aportación a “Desde la Historia”. Desde nuestro profundo convencimiento de que el quehacer didáctico es un arte más que una ciencia –y aquí nos resulta obligado el recuerdo de Paco Hernán-, y por tanto improgramable, nos dejaremos llevar también aquí de la intuición de cada momento: fiaremos a la motivación contenidos y digresiones, apasionamientos, descaros y concurrencias. Lo que escribamos estará seguramente muy relacionado con las conexiones que nuestras clases nos motiven, de manera que lo más probable es que haya en los artículos una fuerte interdisciplinariedad, una mezcla de intereses personales sobre historia y de reflexiones sobre didáctica. En cualquier caso intentaremos responder a la renovada confianza que SUMA nos ha mostrado y que sinceramente agradecemos. Por supuesto, nuestra dirección de correo está disponible para cualquier sugerencia, aportación o crítica que los lectores y lectoras de SUMA queráis hacer.
Resumo:
Conocimiento es la información sin uso, el saber es la acción deliberada para hacer del conocimiento un objeto útil frente a una situación problemática. De donde se deduce que el aprendizaje es una manifestación de la evolución del conocimiento en saber. Por lo que el aprendizaje consiste en dar la respuesta correcta antes de la situación concreta.
Resumo:
Demos un gran salto en el tiempo. En números anteriores narramos los avatares del problema isoperimétrico en Grecia y en los países islámicos medievales, respectivamente. Retomemos el enfoque dado por Pappus con el que llegó a la conclusión de que, para un área dada, el perímetro del hexágono regular es menor que el del cuadrado o el del triángulo equilátero, por lo que si el problema se plantea sobre una teselación regular del plano, un trozo finito del teselado regular hecho con hexágonos regulares es el que requiere menor perímetro. Bueno, aún no podemos detenernos porque hemos de hacer la demostración de la proposición de Pappus en 3D. El conocido MacLaurin (1698-1746), profesor de Aberdeen y Edimburgo, utilizó el método que a continuación presentamos. Lo hizo para poner de manifiesto la capacidad de la Geometría clásica como fuente de investigación en cualquier momento (conviene recordar que MacLaurin estaba centrado en analizar las posibilidades de los métodos infinitesimales que en su época emergían, lo que demostró sobradamente con su Treatise of Fluxions).
Resumo:
No hay que desempeñarse mucho ni dar razonamientos sofisticados para estar de acuerdo que entre todos los Medios de Comunicación Social (MCS) el menos apropiado para servir de soporte a las matemáticas es la radio. Porque por sus ondas pueden transmitirse ideas y situaciones que tengan que ver con los números, pero en cuanto pasemos a la geometría, ¿de qué posibilidades dispondremos para visualizar situaciones planas y mucho peor si nos involucramos en las tres dimensiones? Desde luego, que el reto es complejo y quizás por eso mismo atractivo. Y recordando que durante años (que incluso podríamos extender a siglos) el soporte principal de la enseñanza (luego se supone que del aprendizaje) de las matemáticas ha sido la pizarra (que tampoco es que sea ni muy apropiado ni muy sugestivo) igual se podría hacer algo al respecto. Tal vez valdría la pena intentarlo.
Resumo:
La tradicional prueba del médico aunque pasa de moda para verificar la corrección de resultados de cálculos numéricos, ofrece una situación problemática interesante sobre teoría de números. En este artículo se recordara en qué consiste la prueba del nueve y se abordaron los siguientes cuestiones: ¿qué prueba la prueba del nueve? ¿Por qué el nueve no otro número como siete vuelo 11? ¿sirve nueve para sistema de numeración distintos de 10? por último ¿qué hacer con la prueba del nueve: abandonarla como prueba buscar otra unidad didáctica?.
Resumo:
Hace ahora cinco años que comenzó a implantarse la educación secundaria obligatoria en algunos centros de diferentes lugares. Desde entonces, el número de estudiantes y de centros que se han incorporado a esta etapa educativa ha ido creciendo progresivamente. Tenemos ya alguna experiencia que nos permite hacer un primer balance de sus características más relevantes y sus efectos en relación con la enseñanza y el aprendizaje de las matemáticas y de las condiciones en las que se ha ido poniendo en marcha.
Resumo:
La sección áurea puede ser un tema al que hacer referencia en distintos momentos y etapas del currículo escolar. Es idóneo para mostrar la relación entre las matemáticas y otras asignaturas del ámbito de humanidades y, de esta forma, contribuir a destruir el muro que tradicionalmente separa a los alumnos en «de letras» y «de ciencias». En este articulo, estudiando el ritmo de intensidad de la poesía clásica española, descubrimos cómo en los metros fundamentales y más utilizados por los autores de todos los tiempos podemos encontrar bien razones áureas, bien otras no menos bellas.
Resumo:
En este articulo se pretende hacer ver a los alumnos que el uso de una calculadora gráfica ayuda a comprender el rápido crecimiento de la función exponencial. Por otra parte, en la actividad del cálculo de un limite indeterminado, podemos observar cómo el uso de la calculadora nos permite justificar la necesidad de lo descomposición factorial de polinomios para obtener este tipo de límites, ya que la calculadora, debido a que utiliza un número finito de cifras decimales, puede llegar a introducir errores de bulto.
Resumo:
Tras una breve introducción para hacer referencia a distintos tipos de códigos secretos, el articulo estudia con detalle, esquemáticamente y mediante ejemplos, los códigos matriciales. Se expone, además, una forma de automatizar dichos códigos en el aula, mediante un programa escrito en dBASE III Plus. La parte final consta de unas preguntas sobre sus posibilidades didácticas.