947 resultados para Linear growth
Resumo:
There are essentially two different phenomenological models available to describe the interdiffusion process in binary systems in the olid state. The first of these, which is used more frequently, is based on the theory of flux partitioning. The second model, developed much more recently, uses the theory of dissociation and reaction. Although the theory of flux partitioning has been widely used, we found that this theory does not account for the mobility of both species and therefore is not suitable for use in most interdiffusion systems. We have first modified this theory to take into account the mobility of both species and then further extended it to develop relations or the integrated diffusion coefficient and the ratio of diffusivities of the species. The versatility of these two different models is examined in the Co-Si system with respect to different end-member compositions. From our analysis, we found that the applicability of the theory of flux partitioning is rather limited but the theory of dissociation and reaction can be used in any binary system.
Resumo:
Treatment of WISH (human amnion) cells with interferon-gamma (IFN-gamma) inhibits their growth. Release of the cells from IFN-gamma-mediated growth inhibition led to a rapid and significant increase in DNA synthesis, followed by doubling of cell numbers. The DNA synthesis profile was strikingly similar to that shown by WISH cells released from growth arrest by the G(1)/S phase inhibitor, aphidicolin, This strongly suggested that IFN-gamma treatment leads to growth inhibition of WISH cells at the G(1)/S boundary of the cell cycle. In contrast, IFN-alpha blocked growth of these cells at the G(0)/G(1) boundary.
Resumo:
1 Species-accumulation curves for woody plants were calculated in three tropical forests, based on fully mapped 50-ha plots in wet, old-growth forest in Peninsular Malaysia, in moist, old-growth forest in central Panama, and in dry, previously logged forest in southern India. A total of 610 000 stems were identified to species and mapped to < Im accuracy. Mean species number and stem number were calculated in quadrats as small as 5 m x 5 m to as large as 1000 m x 500 m, for a variety of stem sizes above 10 mm in diameter. Species-area curves were generated by plotting species number as a function of quadrat size; species-individual curves were generated from the same data, but using stem number as the independent variable rather than area. 2 Species-area curves had different forms for stems of different diameters, but species-individual curves were nearly independent of diameter class. With < 10(4) stems, species-individual curves were concave downward on log-log plots, with curves from different forests diverging, but beyond about 104 stems, the log-log curves became nearly linear, with all three sites having a similar slope. This indicates an asymptotic difference in richness between forests: the Malaysian site had 2.7 times as many species as Panama, which in turn was 3.3 times as rich as India. 3 Other details of the species-accumulation relationship were remarkably similar between the three sites. Rectangular quadrats had 5-27% more species than square quadrats of the same area, with longer and narrower quadrats increasingly diverse. Random samples of stems drawn from the entire 50 ha had 10-30% more species than square quadrats with the same number of stems. At both Pasoh and BCI, but not Mudumalai. species richness was slightly higher among intermediate-sized stems (50-100mm in diameter) than in either smaller or larger sizes, These patterns reflect aggregated distributions of individual species, plus weak density-dependent forces that tend to smooth the species abundance distribution and 'loosen' aggregations as stems grow. 4 The results provide support for the view that within each tree community, many species have their abundance and distribution guided more by random drift than deterministic interactions. The drift model predicts that the species-accumulation curve will have a declining slope on a log-log plot, reaching a slope of O.1 in about 50 ha. No other model of community structure can make such a precise prediction. 5 The results demonstrate that diversity studies based on different stem diameters can be compared by sampling identical numbers of stems. Moreover, they indicate that stem counts < 1000 in tropical forests will underestimate the percentage difference in species richness between two diverse sites. Fortunately, standard diversity indices (Fisher's sc, Shannon-Wiener) captured diversity differences in small stem samples more effectively than raw species richness, but both were sample size dependent. Two nonparametric richness estimators (Chao. jackknife) performed poorly, greatly underestimating true species richness.
Resumo:
Good quality single crystals of copper metagermanite, CuGeO3, are grown by flux technique. Growth is carried out at relatively low temperatures by using Bi2O3 along with CuO in an optimal flux ratio. Besides rendering the procedure simple, lower growth temperature reduces growth defect concentration. Single crystals of Cu1 - xCoxGeO3 and CuGe1 - yGayO3 are grown by the same method for different values of x and y to investigate the influence of in-chain and off-chain doping on spin-Peierls (SP) transition. Change in color, morphology and surface features as a result of doping are briefly discussed. Spin-Peierls transition of these crystals is studied by susceptibility measurements on a commercial SQUID magnetometer. Cationic substitution resulted in reduction of spin-Peierls transition temperature (T-SP) of CuGeO3. Substitution of magnetic impurity cobalt in-chain site caused more pronounced effects such as suppression of SP phase.
Resumo:
Polycrystalline films of SrBi2Nb2O9 were grown using pulsed-laser ablation. The ferroelectric properties were achieved by low-temperature deposition followed by a subsequent annealing process. The lower switching voltage was obtained by lowering the thickness, which did not affect the insulating nature of the films. The hysteresis results showed an excellent square-shaped loop with results (P-r=6 mu C/cm(2), E-c=100 kV/cm) in good agreement with earlier reports. The films also exhibited a dielectric constant of 250 and a dissipation factor of 0.02. The transport studies indicated an ohmic behavior, while higher voltages induced a bulk space charge.
Resumo:
Antiferroelectric lead zirconate (PZ) thin films were deposited by pulsed laser ablation on platinum-coated silicon substrates. Films showed a polycrystalline pervoskite structure upon annealing at 650 degrees C for 5-10 min. Dielectric properties were investigated as a function of temperature and frequency. The dielectric constant of PZ films was 220 at 100 kHz with a dissipation factor of 0.03. The electric field induced transformation from the antiferroelectric phase to the ferroelectric phase was observed through the polarization change, using a Sawyer-Tower circuit. The maximum polarization value obtained was 40 mu C/cm(2). The average fields to excite the ferroelectric state, and to reverse to the antiferroelectric state were 71 and 140 kV/cm, respectively. The field induced switching was also observed through double maxima in capacitance-voltage characteristics. Leakage current was studied in terms of current versus time and current versus voltage measurements. A leakage current density of 5x10(-7) A/cm(2) at 3 V, for a film of 0.7 mu m thickness, was noted at room temperature. The trap mechanism was investigated in detail in lead zirconate thin films based upon a space charge limited conduction mechanism. The films showed a backward switching time of less than 90 ns at room temperature.
Resumo:
We consider a Linear system with Markovian switching which is perturbed by Gaussian type noise, If the linear system is mean square stable then we show that under certain conditions the perturbed system is also stable, We also shaw that under certain conditions the linear system with Markovian switching can be stabilized by such noisy perturbation.
Resumo:
Using an OLG-model with endogenous growth and public capital we show, that an international capital tax competition leads to inefficiently low tax rates, and as a consequence to lower welfare levels and growth rates. Each national government has an incentive to reduce the capital income tax rates in its effort to ensure that this policy measure increases the domestic private capital stock, domestic income and domestic economic growth. This effort is justified as long as only one country applies this policy. However, if all countries follow this path then all of them will be made worse off in the long run.
Resumo:
The confusion over the growth rate of the Nb3Sn superconductor compound following the bronze technique is addressed. Furthermore, a possible explanation for the corrugated structure of the product phase in the multifilamentary structure is discussed. Kirkendall marker experiments are conducted to study the relative mobilities of the species, which also explains the reason for finding pores in the product phase layer. The movement of the markers after interdiffusion reflects that Sn is the faster diffusing species. Furthermore, different concentrations of Sn in the bronze alloy are considered to study the effect of Sn content on the growth rate. Based on the parabolic growth constant at different temperatures, the activation energy for the growth is determined.
Resumo:
Rapid and unplanned growth of Kathmandu Valley towns over the past decades has resulted in the haphazard development of new neighbourhoods with significant consequences on their public space. This paper examines the development of public space in the valley’s new neighbourhoods in the context of the current urban growth. A case study approach of three new neighbourhoods was developed to examine the provision of public space with data collected from site observations, interviews with neighbourhood residents and other secondary sources. The cases studies consist of both planned and unplanned new neighbourhoods. Findings reveal a severe loss of public space in the unplanned new neighbourhoods. In planned new neighbourhoods, the provision of public space remains poor in terms of physical features, and thus, does not support community activities and needs. Several factors, which are an outcome of the lack of proper urban growth initiatives and control measures, such as an overall drawback in the formation of new neighbourhoods, the poor capacity of local community-based organisations and the encroachment of public land are responsible for the present development of neighbourhood public space. The problems with ongoing management of public spaces are a significant issue in both unplanned and planned new neighbourhoods.
Resumo:
Background: A genetic network can be represented as a directed graph in which a node corresponds to a gene and a directed edge specifies the direction of influence of one gene on another. The reconstruction of such networks from transcript profiling data remains an important yet challenging endeavor. A transcript profile specifies the abundances of many genes in a biological sample of interest. Prevailing strategies for learning the structure of a genetic network from high-dimensional transcript profiling data assume sparsity and linearity. Many methods consider relatively small directed graphs, inferring graphs with up to a few hundred nodes. This work examines large undirected graphs representations of genetic networks, graphs with many thousands of nodes where an undirected edge between two nodes does not indicate the direction of influence, and the problem of estimating the structure of such a sparse linear genetic network (SLGN) from transcript profiling data. Results: The structure learning task is cast as a sparse linear regression problem which is then posed as a LASSO (l1-constrained fitting) problem and solved finally by formulating a Linear Program (LP). A bound on the Generalization Error of this approach is given in terms of the Leave-One-Out Error. The accuracy and utility of LP-SLGNs is assessed quantitatively and qualitatively using simulated and real data. The Dialogue for Reverse Engineering Assessments and Methods (DREAM) initiative provides gold standard data sets and evaluation metrics that enable and facilitate the comparison of algorithms for deducing the structure of networks. The structures of LP-SLGNs estimated from the INSILICO1, INSILICO2 and INSILICO3 simulated DREAM2 data sets are comparable to those proposed by the first and/or second ranked teams in the DREAM2 competition. The structures of LP-SLGNs estimated from two published Saccharomyces cerevisae cell cycle transcript profiling data sets capture known regulatory associations. In each S. cerevisiae LP-SLGN, the number of nodes with a particular degree follows an approximate power law suggesting that its degree distributions is similar to that observed in real-world networks. Inspection of these LP-SLGNs suggests biological hypotheses amenable to experimental verification. Conclusion: A statistically robust and computationally efficient LP-based method for estimating the topology of a large sparse undirected graph from high-dimensional data yields representations of genetic networks that are biologically plausible and useful abstractions of the structures of real genetic networks. Analysis of the statistical and topological properties of learned LP-SLGNs may have practical value; for example, genes with high random walk betweenness, a measure of the centrality of a node in a graph, are good candidates for intervention studies and hence integrated computational – experimental investigations designed to infer more realistic and sophisticated probabilistic directed graphical model representations of genetic networks. The LP-based solutions of the sparse linear regression problem described here may provide a method for learning the structure of transcription factor networks from transcript profiling and transcription factor binding motif data.
Resumo:
L-Alanylglycyl-L-alanine, C8H15N3O4, exists as zwitter-ion in the crystal with the N terminus protonated and the C terminus in an ionized form, Both the peptide units are in trans configurations and deviate significantly from planarity. Backbone torsion angles are psi(1)=172.7(2), omega(1)=-178.2(2), phi(2)=91.7(2), phi(2)=-151.9(2), omega(2)=-176.9(2), phi(3)=-71.3(2), phi(31)=-7.0(3) and psi(32) 172.4(2)degrees. The protonated NH3+ group forms three hydrogen bonds with atoms of symmetry-related molecules.
Resumo:
In this paper, expressions for convolution multiplication properties of DCT IV and DST IV are derived starting from equivalent DFT representations. Using these expressions methods for implementing linear filtering through block convolution in the DCT IV and DST IV domain are proposed. Techniques developed for DCT IV and DST IV are further extended to MDCT and MDST where the filter implementation is near exact for symmetric filters and approximate for non-symmetric filters. No additional overlapping is required for implementing the symmetric filtering in the MDCT domain and hence the proposed algorithm is computationally competitive with DFT based systems. Moreover, inherent 50% overlap between the adjacent frames used for MDCT/MDST domain reduces the blocking artifacts due to block processing or quantization. The techniques are computationally efficient for symmetric filters and provides a new alternative to DFT based convolution.
Resumo:
We propose a dynamic mathematical model of tissue oxygen transport by a preexisting three-dimensional microvascular network which provides nutrients for an in situ cancer at the very early stage of primary microtumour growth. The expanding tumour consumes oxygen during its invasion to the surrounding tissues and cooption of host vessels. The preexisting vessel cooption, remodelling and collapse are modelled by the changes of haemodynamic conditions due to the growing tumour. A detailed computational model of oxygen transport in tumour tissue is developed by considering (a) the time-varying oxygen advection diffusion equation within the microvessel segments, (b) the oxygen flux across the vessel walls, and (c) the oxygen diffusion and consumption with in the tumour and surrounding healthy tissue. The results show the oxygen concentration distribution at different time points of early tumour growth. In addition, the influence of preexisting vessel density on the oxygen transport has been discussed. The proposed model not only provides a quantitative approach for investigating the interactions between tumour growth and oxygen delivery, but also is extendable to model other molecules or chemotherapeutic drug transport in the future study.
Resumo:
Identification of vulnerable plaque pre-rupture is extremely important for patient risk stratification. The mechanism of plaque rupture is still not entirely clear, but it is thought to be a process involving multiple factors. From a biomechanical viewpoint, plaque rupture is usually seen as a structural failure when the plaque cannot resist the hemodynamic blood pressure and shear stress exerted on it. However, the cardiovascular system is naturally a cyclical hemodynamic environment, and myocardial infarction can be a symptomatically quiescent but potentially progressive process when plaque ruptures at stresses much lower than its strength. Therefore, fatigue accumulation is a possible mechanism for plaque rupture. In this study, a crack growth model was developed, and the previously-mentioned hypothesis was tested by conducting a comparative study between 18 symptomatic and 16 asymptomatic patients with carotid stenosis.