966 resultados para Inverse problems (Differential equations)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this Letter we investigate Lie symmetries of a (2 + 1)-dimensional integrable generalization of the Camassa-Holm (CH) equation. Through the similarity reductions we obtain four different (1 + 1)-dimensional systems of partial differential equations in which one of them turns out to be a (1 + 1)-dimensional CH equation. We establish their integrability by providing the Lax pair for all of them. Further, we present a brief analysis for some types of particular solutions which include the cuspon, peakon and soliton solutions for the two-dimensional generalization of the CH equation. (C) 2000 Published by Elsevier B.V. B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many years ago Zel'dovich showed how the Lagrange condition in the theory of differential equations can be utilized in the perturbation theory of quantum mechanics. Zel'dovich's method enables us to circumvent the summation over intermediate states. As compared with other similar methods, in particular the logarithmic perturbation expansion method, we emphasize that this relatively unknown method of Zel'dovich has a remarkable advantage in dealing with excited stares. That is, the ground and excited states can all be treated in the same way. The nodes of the unperturbed wavefunction do not give rise to any complication.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we study the travelling wave reductions for certain (2 + 1)- and (3 + 1)-dimensional physically important nonlinear evolutionary equations by using the recently proposed Homogenous Balance Method (HBM). Through this analysis we explore certain new solutions for the equations we have studied. (C) 2001 Published by Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we investigate the invariance and integrability properties of an integrable two-component reaction-diffusion equation. We perform Painleve analysis for both the reaction-diffusion equation modelled by a coupled nonlinear partial differential equations and its general similarity reduced ordinary differential equation and confirm its integrability. Further, we perform Lie symmetry analysis for this model. Interestingly our investigations reveals a rich variety of particular solutions, which have not been reported in the literature, for this model. (C) 2000 Elsevier B.V. Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We suggest a pseudospectral method for solving the three-dimensional time-dependent Gross-Pitaevskii (GP) equation, and use it to study the resonance dynamics of a trapped Bose-Einstein condensate induced by a periodic variation in the atomic scattering length. When the frequency of oscillation of the scattering length is an even multiple of one of the trapping frequencies along the x, y or z direction, the corresponding size of the condensate executes resonant oscillation. Using the concept of the differentiation matrix, the partial-differential GP equation is reduced to a set of coupled ordinary differential equations, which is solved by a fourth-order adaptive step-size control Runge-Kutta method. The pseudospectral method is contrasted with the finite-difference method for the same problem, where the time evolution is performed by the Crank-Nicholson algorithm. The latter method is illustrated to be more suitable for a three-dimensional standing-wave optical-lattice trapping potential.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the existence of homoclic solutions for reversible Hamiltonian systems taking the family of differential equations u(iv) + au - u +f(u, b) = 0 as a model, where fis an analytic function and a, b real parameters. These equations are important in several physical situations such as solitons and in the existence of finite energy stationary states of partial differential equations, but no assumptions of any kind of discrete symmetry is made and the analysis here developed can be extended to others Hamiltonian systems and successfully employed in situations where standard methods fail. We reduce the problem of computing these orbits to that of finding the intersection of the unstable manifold with a suitable set and then apply it to concrete situations. We also plot the homoclinic values configuration in parameters space, giving a picture of the structural distribution and a geometrical view of homoclinic bifurcations. (c) 2005 Published by Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We generalize the Hamilton-Jacobi formulation for higher-order singular systems and obtain the equations of motion as total differential equations. To do this we first study the constraints structure present in such systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we present a formal generalization of the Hamilton-Jacobi formalism, recently developed For singular systems, to include the case of Lagrangians containing variables which are elements of Berezin algebra. We derive the Hamilton-Jacobi equation for such systems, analyzing the singular case in order to obtain the equations of motion as total differential equations and study the integrability conditions for such equations. An example is solved using both Hamilton-Jacobi and Dirac's Hamiltonian formalisms and the results are compared. (C) 1998 Academic Press.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work deals with a first-order formalism for dark energy and dust in standard cosmology, for models described by a real scalar field in the presence of dust in spatially flat space. The field dynamics may be standard or tachyonic, and we show how the equations of motion can be solved by first-order differential equations. We investigate a model to illustrate how the dustlike matter may affect the cosmic evolution using this framework.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We construct static and time-dependent exact soliton solutions with nontrivial Hopf topological charge for a field theory in 3 + 1 dimensions with the target space being the two dimensional sphere S(2). The model considered is a reduction of the so-called extended Skyrme-Faddeev theory by the removal of the quadratic term in derivatives of the fields. The solutions are constructed using an ansatz based on the conformal and target space symmetries. The solutions are said self-dual because they solve first order differential equations which together with some conditions on the coupling constants, imply the second order equations of motion. The solutions belong to a sub-sector of the theory with an infinite number of local conserved currents. The equation for the profile function of the ansatz corresponds to the Bogomolny equation for the sine-Gordon model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The permutability of two Backlund transformations is employed to construct a nonlinear superposition formula and to generate a class of solutions for the N=2 super sine-Gordon model. We present explicitly the one and two soliton solutions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we discuss the algebraic construction of the mKdV hierarchy in terms of an affine Lie algebra (s) over capl(2). An interesting novelty araises from the negative even grade sector of the affine algebra leading to nonlinear integro-differential equations admiting non-trivial vacuum configuration. These solitons solutions are constructed systematically from generalization of the dressing method based on non zero vacua. The sub-hierarchies admiting such class of solutions are classified.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The time evolution of the matter produced in high energy heavy-ion collisions seems to be well described by relativistic viscous hydrodynamics. In addition to the hydrodynamic degrees of freedom related to energy-momentum conservation, degrees of freedom associated with order parameters of broken continuous symmetries must be considered because they are all coupled to each other. of particular interest is the coupling of degrees of freedom associated with the chiral symmetry of QCD. Quantum and thermal fluctuations of the chiral fields act as noise sources in the classical equations of motion, turning them into stochastic differential equations in the form of Ginzburg-Landau-Langevin (GLL) equations. Analytic solutions of GLL equations are attainable only in very special circumstances and extensive numerical simulations are necessary, usually by discretizing the equations on a spatial lattice. However, a not much appreciated issue in the numerical simulations of GLL equations is that ultraviolet divergences in the form of lattice-spacing dependence plague the solutions. The divergences are related to the well-known Rayleigh-Jeans catastrophe in classical field theory. In the present communication we present a systematic lattice renormalization method to control the catastrophe. We discuss the implementation of the method for a GLL equation derived in the context of a model for the QCD chiral phase transition and consider the nonequilibrium evolution of the chiral condensate during the hydrodynamic flow of the quark-gluon plasma.