Negative Even Grade mKdV Hierarchy and its Soliton Solutions


Autoria(s): Gomes, J. F.; de Melo, G. R.; Starvaggi Franca, G.; Zimerman, Abraham Hirsz; Angelova, M; Zakrzewski, W; Hussin,; Piette, B
Contribuinte(s)

Universidade Estadual Paulista (UNESP)

Data(s)

30/09/2013

20/05/2014

30/09/2013

20/05/2014

01/01/2011

Resumo

In this paper we discuss the algebraic construction of the mKdV hierarchy in terms of an affine Lie algebra (s) over capl(2). An interesting novelty araises from the negative even grade sector of the affine algebra leading to nonlinear integro-differential equations admiting non-trivial vacuum configuration. These solitons solutions are constructed systematically from generalization of the dressing method based on non zero vacua. The sub-hierarchies admiting such class of solutions are classified.

Formato

9

Identificador

http://dx.doi.org/10.1088/1742-6596/284/1/012030

Group 28: Physical and Mathematical Aspects of Symmetry: Proceedings of The 28th International Colloquium on Group-theoretical Methods In Physics. Bristol: Iop Publishing Ltd, v. 284, p. 9, 2011.

1742-6588

http://hdl.handle.net/11449/24590

10.1088/1742-6596/284/1/012030

WOS:000295845500030

WOS000295845500030.pdf

Idioma(s)

eng

Publicador

Iop Publishing Ltd

Relação

Group 28: Physical and Mathematical Aspects of Symmetry: Proceedings of The 28th International Colloquium on Group-theoretical Methods In Physics

Direitos

openAccess

Tipo

info:eu-repo/semantics/conferencePaper