981 resultados para IEEE 1451.0 Std.
Resumo:
Self-switching diodes have been fabricated within a single layer of indium-gallium zinc oxide (IGZO). Current-voltage (I-V) measurements show the nanometer-scale asymmetric device gave a diode-like response. Full current rectification was achieved using very narrow channel widths of 50nm, with a turn-on voltage, Von, of 2.2V. The device did not breakdown within the -10V bias range measured. This single diode produced a current of 0.1μA at 10V and a reverse current of less than 0.1nA at -10V. Also by adjusting the channel width for these devices, Von could be altered; however, the effectiveness of the rectification also changed. © 2013 IEEE.
Resumo:
This paper examines the impact of two simple precoding schemes on the capacity of 3 × 3 MIMO-enabled radio-over-fiber (RoF) distributed antenna systems (DAS) with excess transmit antennas. Specifically, phase-shift-only transmit beamforming and antenna selection are compared. It is found that for two typical indoor propagation scenarios, both strategies offer double the capacity gain that non-precoding MIMO DAS offers over traditional MIMO collocated antenna systems (CAS), with capacity improvements of 3.2-4.2 bit/s/Hz. Further, antenna selection shows similar performance to phase-only beamforming, differing by <0.5% and offering median capacities of 94 bit/s/Hz and 82 bit/s/Hz in the two propagation scenarios respectively. Because optical DASs enable precise, centralized control of remote antennas, they are well suited for implementing these beamforming schemes. Antenna selection, in particular, is a simple and effective means of increasing MIMO DAS capacity. © 2013 IEEE.
Resumo:
The reaction between an 11 nm Ni(10 at.% Pt) film on a Si substrate has been examined by in situ X-ray diffraction (XRD), atom probe tomography (APT) and transmission electron microscopy (TEM). In situ XRD experiments show the unusual formation of a phase without an XRD peak through consumption of the metal. According to APT, this phase has an Si concentration gradient in accordance with the θ-Ni2Si metastable phase. TEM analysis confirms the direct formation of θ-Ni2Si in epitaxy on Si(1 0 0) with two variants of the epitaxial relationship. © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
The paper presents a new concept of locomotion for wheeled or legged robots through an object-free space. The concept is inspired by the behaviour of spiders forming silk threads to move in 3D space. The approach provides the possibility of variation in thread diameter by deforming source material, therefore it is useful for a wider coverage of payload by mobile robots. As a case study, we propose a technology for descending locomotion through a free space with inverted formation of threads in variable diameters. Inverted thread formation is enabled with source material thermoplastic adhesive (TPA) through thermally-induced phase transition. To demonstrate the feasibility of the technology, we have designed and prototyped a 300-gram wheeled robot that can supply and deform TPA into a thread and descend with the thread from an existing hanging structure. Experiment results suggest repeatable inverted thread formation with a diameter range of 1.1-4.5 mm, and a locomotion speed of 0.73 cm per minute with a power consumption of 2.5 W. © 2013 IEEE.
Resumo:
Despite many approaches proposed in the past, robotic climbing in a complex vertical environment is still a big challenge. We present here an alternative climbing technology that is based on thermoplastic adhesive (TPA) bonds. The approach has a great advantage because of its large payload capacity and viability to a wide range of flat surfaces and complex vertical terrains. The large payload capacity comes from a physical process of thermal bonding, while the wide applicability benefits from rheological properties of TPAs at higher temperatures and intermolecular forces between TPAs and adherends when being cooled down. A particular type of TPA has been used in combination with two robotic platforms, featuring different foot designs, including heating/cooling methods and construction of footpads. Various experiments have been conducted to quantitatively assess different aspects of the approach. Results show that an exceptionally high ratio of 500% between dynamic payloads and body mass can be achieved for stable and repeatable vertical climbing on flat surfaces at a low speed. Assessments on four types of typical complex vertical terrains with a measure, i.e., terrain shape index ranging from -0.114 to 0.167, return a universal success rate of 80%-100%. © 2004-2012 IEEE.
Resumo:
Submitted by zhangdi (zhangdi@red.semi.ac.cn) on 2009-04-13T11:45:31Z
Resumo:
Submitted by zhangdi (zhangdi@red.semi.ac.cn) on 2009-04-13T11:45:31Z
Resumo:
Submitted by zhangdi (zhangdi@red.semi.ac.cn) on 2009-04-13T11:45:31Z
Resumo:
The properties of electron states in the presence of microwave irradiation play a key role in understanding the oscillations of longitudinal resistance and the zero-resistance states in a high-mobility two-dimensional electron gas(2DEG) in low magnetic field. The properties of electron states in a high-mobility and low-density GaAs/Al0.35Ga0.65As 2DEG in the presence of Ka-band microwave irradiation were studied by reflectance-based optically detected cyclotron resonance(RODCR). The influences of the direction of microwave alternating electronic field, wavelength of the laser, and temperature on RODCR results were discussed. The results show that RODCR measurements provide a convenient and powerful method for studying electron states in 2DEG.
Resumo:
Microsquare resonators laterally confined by SiO2/Au/air multilayer structure are investigated by light ray method with reflection phase-shift of the multiple layers and two-dimensional (2-D) finite-difference time-domain (FDTD) technique. The reflectivity and phase shift of the mode light ray on the sides of the square resonator with the semiconductor/SiO2/Au/air multilayer structure are calculated for TE and TM modes by transfer matrix method. Based on the reflection phase shift and the reflectivity, the mode wavelength and factor are calculated by the resonant condition and the mirror loss, which are in agreement well with that obtained by the FDTD simulation. We find that the mode factor increases greatly with the increase of the SiO2 layer thickness, especially as d < 0.3 mu m. For the square resonator with side length 2 mu m and refractive index 3.2, anticrossing mode couplings are found for confined TE modes at wavelength about 1.6 mu m at d = 0.11 mu m, and confined TM modes at d = 0.71 mu m, respectively.
Resumo:
Submitted by zhangdi (zhangdi@red.semi.ac.cn) on 2009-06-04T08:36:34Z No. of bitstreams: 1 dspace.cfg: 33388 bytes, checksum: ac9630d3fdb36a155287a049e8b34eb7 (MD5)
Resumo:
A programmable vision chip for real-time vision applications is presented. The chip architecture is a combination of a SIMD processing element array and row-parallel processors, which can perform pixel-parallel and row-parallel operations at high speed. It implements the mathematical morphology method to carry out low-level and mid-level image processing and sends out image features for high-level image processing without I/O bottleneck. The chip can perform many algorithms through software control. The simulated maximum frequency of the vision chip is 300 MHz with 16 x 16 pixels resolution. It achieves the rate of 1000 frames per second in real-time vision. A prototype chip with a 16 x 16 PE array is fabricated by the 0.18 mu m standard CMOS process. It has a pixel size of 30 mu m x 40 mu m and 8.72 mW power consumption with a 1.8 V power supply. Experiments including the mathematical morphology method and target tracking application demonstrated that the chip is fully functional and can be applied in real-time vision applications.
Resumo:
(Na1-xKx)(0.5)Bi0.5TiO3 (NKBT) (x = 0.1, 0.2, and 0.3) thin films with good surface morphology and rhombohedral perovskite structure were fabricated on quartz substrates by a sol-gel process. The fundamental optical constants (the band gaps, linear refractive indices and absorption coefficients) of the films were obtained through optical transmittance measurements. The nonlinear optical properties were investigated by Z-scan technique performed at 532 nm with a picosecond laser. A two-photon absorption effect closely related with potassium-doping content was found in thin films, and the nonlinear refractive index n(2) increases evidently with potassium-doping. The real part of the third-order nonlinear susceptibility chi((3)) is much larger than its imaginary part, indicating that the third-order optical nonlinear response of the NKBT films is dominated by the optical nonlinear refractive behavior. These results show that NKBT thin films have potential applications in nonlinear optics. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Mode characteristics of three-dimensional (3-D) microsquare resonators are investigated by finite-difference time-domain (FDTD) simulation for the transverse electric (TE)-like and the transverse magnetic (TM)-like modes. For a pillar microsquare with a side length of 2 pin in air, we have Q-factors about 5 X. 103 for TM-like modes at the wavelength of 1550 run, which are one order larger than those of TE-like modes, as vertical refractive index distribution is 3.17/3.4/3.17 and the cororresponding center layer thickness is 0.2 mu m. The mode field patterns show that TM-like modes have much weaker vertical radiation coupling loss than TE-like modes. TM-like modes can have high Q-factors in a microsquare with weak vertical field confinement.
Resumo:
In this letter, we have demonstrated continuous-wave single-mode operation of 1.3-mu m InAs-GaAs quantum-dot (QD) vertical-cavity surface-emitting lasers (VCSELs) with p-type modulation-doped QD active region from 20 degrees C to 60 degrees C. The highest output power of 0.435mW and lowest threshold current of 1.2 mA under single-mode operation are achieved. The temperature-dependent output characteristics of QD-VCSELs are investigated. Single-mode operation with a sidemode suppression ratio of 34 dB is observed at room temperature. The critical size of oxide aperture for single-mode operation is discussed.