991 resultados para Fermi Level


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a method for trace level analysis of microcystins in water using solid-phase extraction and high performance liquid chromatography. The optimized condition enabled the determination of common microcystins at levels as low as 0.02 similar to 0.05 mug/L, and the liner range is from 0.1 mug/L to 50 mug/L. The method has been applied to the analysis of field sample from Dianchi lake.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A wafer-level testable silicon-on-insulator-based microring modulator is demonstrated with high modulation speed, to which the grating couplers are integrated as the fiber-to-chip interfaces. Cost-efficient fabrications are realized with the help of optical structure and etching depth designs. Grating couplers and waveguides are patterned and etched together with the same slab thickness. Finally we obtain a 3-dB coupling bandwidth of about 60nm and 10 Gb/s nonreturn-to-zero modulation by wafer-level optical and electrical measurements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Field emissions (FE) from La-doped zinc oxide (ZnO) films are both experimentally and theoretically investigated. Owing to the La-doped effect, the FE characteristic of ZnO films is remarkably enhanced compared with an undoped sample, and a startling low turn-on electric field of about 0.4 V/mu m (about 2.5 V/mu m for the undoped ZnO films) is obtained at an emission current density of 1 mu A/cm(2) and the stable current density reaches 1 mA/cm(2) at an applied field of about 2.1 V/mu m. A self-consistent theoretical analysis shows that the novel FE enhancement of the La-doped sample may be originated from its smaller work function. Due to the effect of doping with La, the Fermi energy level lifts, electrons which tunnelling from surface barrier are consumedly enhancing, and then leads to a huge change of field emission current. Interestingly, it suggests a new effective method to improve the FE properties of film materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Deep level transient spectroscopy (DLTS) and thermally stimulated current spectroscopy (TSC) have been used to investigate defects in semi-conducting and semi-insulating (SI) InP after high temperature annealing, respectively. The results indicate that the annealing in iron phosphide ambient has an obvious suppression effect of deep defects, when compared with the annealing in phosphorus ambient. A defect annihilation phenomenon has also been observed in Fe-doped SI-InP materials after annealing. Mechanism of defect formation and annihilation related to in-diffusion of iron and phosphorus is discussed. Nature of the thermally induced defects has been discussed based on the results. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new broadband filter, based on the high level bandgap in 1-D photonic crystals (PCs) of the form Si vertical bar air vertical bar Si vertical bar air vertical bar Si vertical bar air vertical bar Si vertical bar air vertical bar Si vertical bar air vertical bar Si is designed by the plane wave expansion method (PWEM) and the transfer matrix method (TMM) and fabricated by lithography. The optical response of this filter to normal-incident and oblique-incident light proves that utilizing the high-level bandgaps of PCs is an efficient method to lower the difficulties of fabricating PCs, increase the etching depth of semiconductor materials, and reduce the coupling loss at the interface between optical fibers and the PC device. (c) 2007 Society of Photo-Optical Instrumentation Engineers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Deep level defects in high temperature annealed semi-conducting InP have been studied by deep level transient spectroscopy (DLTS). There is obvious difference in the deep defects between as-grown InP, InP annealed in phosphorus ambient and iron phosphide ambient, as far as their quantity and concentration are concerned. Only two defects at 0.24 and 0.64 eV can be detected in InP annealed in iron phosphide ambient, while defects at 0.24, 0.42, 0.54 and 0.64 eV have been detected in InP annealed in phosphorus ambient, in contrast to two defects at 0.49 and 0.64 eV or one defect at 0.13 eV in as-grown InP. A defect suppression phenomenon related to iron diffusion process has been observed. The formation mechanism and the nature of the defects have been discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have investigated the conductance of a quantum dot system suffering an anti-symmetric ac gate voltage which induces the transition between dot levels in the linear regime at zero temperature in the rotating wave approximation. Interesting Fano resonances appear on one side of the displaced resonant tunnelling peaks for the nonresonant case or the peak splitting for the resonant case. The line shape of conductance (vs Fermi energy) near each level of the quantum dot can be decomposed into two profiles: a Breit-Wigner peak and a Fano profile, or a Breit-Wigner peak and a dip in both cases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a scheme to generate maximally entangled states (MESs) of multiple three-level atoms in microwave cavity QED based on the resonant atom-cavity interaction. In the scheme, multiple three-level atoms initially in their ground states are sequently sent through two suitably prepared cavities. After a process of appropriate atom-cavity interaction, a subsequent measurement on the second cavity field projects the atoms onto the MESs. The practical feasibility of this method is also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nickel-doped ZnO (Zn1-xNixO) have been produced using rf magnetron sputtering. X-ray diffraction measurements revealed that nickel atoms were successfully incorporated into ZnO host matrix without forming any detectable secondary phase. Ni 2p core-level photoemission spectroscopy confirmed this result and suggested Ni hits it chemical valence of 2 +. According to the . We studied the electronic magnetization measurements, no ferromagnetic but paramagnetic behavior was found for Zn0.86Ni0.14O. We studied the electronic structure of Zn0.86Ni0.14O by valence-band photoemission spectroscopy. The spectra demonstrate a structure at similar to 2 eV below the Fermi energy E-F, which is of Ni 3d origin. No emission was found at E-A, suggesting the insulating nature of the film. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have investigated the pump effect induced by the level oscillation in a quantum dot with asymmetric constrictions. The curve of pumped current versus the frequency of level oscillation undulates at zero temperature. The oscillation of the pumped current can be smeared by increasing the temperature and the coupling strength between the quantum dot and the leads. Either the temperature increase or the coupling strength enhancement can lead to a positive or negative effect on the pumped current, depending on the parameters of the quantum dot system. A larger level-oscillation magnitude results in a larger pumped current, especially in the low-frequency case. An analytical expression of the pumped current is obtained in the regime far from adiabatic. A convenient physical picture based on our analytic result is proposed, with which we can explain all the features of the pumped current curves.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a scheme to generate a supersinglet of three three-level atoms in microwave cavity quantum electrodynamics based on the resonant atom-cavity interaction. In the scheme, three three-level atoms in suitable initial states are sequentially sent through three cavities originally prepared in their vacuum states. After an appropriate atom-cavity interaction process, in the subsequent measurement on the third cavity field the atoms are projected onto the desired supersinglet. The practical feasibility of this method is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

State-filling effects of the exciton in a In0.65Al0.35As/Al0.4Ga0.6As quantum dot array are observed by quantum dot array photolumineseence at a sample temperature of 77 K. The exciton emission at low excitation density is dominated by the radiative recombination of the states in the s shell and at high excitation density the emission mainly results from the radiative recombination of the exciton state in the p shell. The spectral interval between the states in the s and p shells is about 30-40 mcV. The time resolved photoluminescence shows that the decay time of exciton states in the p shell is longer than that of exciton states in the s shell, and the emission intensity of the exciton state in the p shell is superlinearly dependent on excitation density. Furthermore, electron-hole liquid in the quantum dot array is observed at 77 K, which is a much higher temperature than that in bulk. The emission peak of the. recombination, of electron-hole liquid has an about 200 meV redshift from the exciton fluorescence. Two excitation density-dependent emission peaks at 1.56 and 1.59 eV are observed, respectively, which result from quantum confinement effects in QDs. The emission intensity of electron-hole liquid is directly proportional to the cubic of excitation densities and its decay time decreases significantly at the high excitation density.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a specially- designed three-barrier-double-well tunneling structure, electron injecting from the emitter in combination with escaping through a resonant-tunneling structure were used to adjust and control the filling of electrons in different subbands. It was observed that the occupation in the first-excited electron state can result in a suppression to quantum confinement Stark effect. Moreover, at very low bias, a series of intrigue photoluminescence peaks appeared as a small quantity of excess electron was filled in the ground state of the quantum well, that cannot be explained by the theory of hand-to-hand transition in the framework of single electron picture.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Double-state lasing phenomena are easily observed in self-assembled quantum dot (QD) lasers. The effect of inter-level relaxation rate and cavity length on the double-state lasing performance of QD lasers is investigated on the basis of a rate equation model. Calculated results show that, for a certain cavity length, the ground state (GS) lasing threshold current increases almost linearly with the inter-level relaxation lifetime. However, as the relaxation rate becomes slower, the ratio of excited state (ES) lasing threshold current over the GS one decreases, showing an evident exponential behavior. A relatively feasible method to estimate the inter-level relaxation lifetime, which is difficult to measure directly, is provided. In addition, fast inter-level relaxation is favorable for the GS single-mode lasing, and leads to lower wetting layer (WL) carrier occupation probability and higher QD GS capture efficiency and external differential quantum efficiency. Besides, the double-state lasing effect strongly depends on the cavity length. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Magneto-transport measurements have been carried out on a Si delta-doped In0.65Ga0.35As/In0.52Al0.48As metamorphic high-electron-mobility transistor with InP substrate in a temperature range between 1.5 and 60 K under magnetic field up to 13 T. We studied the Shubnikov-de Haas (SdH) effect and the Hall effect for the In0.65Ga0.35As/In0.52Al0.48As single quantum well occupied by two subbands and obtained the electron concentration and energy levels respectively. We solve the Schrodinger-Kohn-Sham equation in conjunction with the Poisson equation self-consistently and obtain the configuration of conduction band, the distribution of carriers concentration, the energy level of every subband and the Fermi energy. The calculational results are well consistent with the results of experiments. Both experimental and calculational results indicate that almost all of the delta-doped electrons transfer into the quantum well in the temperature range between 1.5 and 60 K.