959 resultados para FACTOR-BINDING PROTEIN-3
Resumo:
Two of the best understood somatic cell mRNA cytoplasmic trafficking elements are those governing localization of beta-actin and myelin basic protein mRNAs. These cis-acting elements bind the trans-acting factors fibroblast ZBP-1 and hnRNP A2, respectively. It is not known whether these elements fulfil other roles in mRNA metabolism. To address this question we have used Edman sequencing and western blotting to identify six rat brain proteins that bind the beta-actin element (zipcode). All are known RNA-binding proteins and differ from ZBP-1. Comparison with proteins that bind the hnRNP A2 and AU-rich response elements, A2RE/A2RE11 and AURE, showed that AURE and zipcode bind a similar set of proteins that does not overlap with those that bind A2RE11. The zipcode-binding protein, KSRP, and hnRNP A2 were selected for further study and were shown by confocal immunolluorescence microscopy to have similar distributions in the central nervous system, but they were found in largely separate locations in cell nuclei. In the cytoplasm of cultured oligodendrocytes they were segregated into separate populations of cytoplasmic granules. We conclude that not only may there be families of trans-acting factors for the same cis-acting element, which are presumably required at different stages of mRNA processing and metabolism, but independent factors may also target different and multiple RNAs in the same cell.
Resumo:
Chemosensory proteins (CSPs) are ubiquitous soluble small proteins isolated from sensory organs of a wide range of insect species, which are believed to be involved in chemical communication. We report the cloning of a honeybee CSP gene called ASP3c, as well as the structural and functional characterization of the encoded protein. The protein was heterologously secreted by the yeast Pichia pastoris using the native signal peptide. ASP3c disulfide bonds were assigned after trypsinolysis followed by chromatography and mass spectrometry combined with microsequencing. The pairing (Cys(I)-Cys(II), Cys(III)-Cys(IV)) was found to be identical to that of Schistocerca gregaria CSPs, suggesting that this pattern occurs commonly throughout the insect CSPs. CD measurements revealed that ASP3c mainly consists of alpha-helices, like other insect CSPs. Gel filtration analysis showed that ASP3c is monomeric at neutral pH. Using ASA, a fluorescent fatty acid anthroyloxy analogue as a probe, ASP3c was shown to bind specifically to large fatty acids and ester derivatives, which are brood pheromone components, in the micromolar range. It was unable to bind tested general odorants and other tested pheromones (sexual and nonsexual). This is the first report on a natural pheromonal ligand bound by a recombinant CSP with a measured affinity constant.
Resumo:
Streptococcus pyogenes (group A streptococcus) strains may express several distinct fibronectin-binding proteins (FBPs) which are considered as major streptococcal adhesins. Of the FBPs, SfbI was shown in vitro to promote internalization of the bacterium into host cells and has been implicated in persistence. In the tropical Northern Territory, where group A streptococcal infection is common, multiple genotypes of the organism were found among isolates from invasive disease cases and no dominant strains were observed. To determine whether any FBPs is associated with invasive disease propensity of S. pyogenes, we have screened streptococcal isolates from bacteraemic and necrotizing fasciitis patients and isolates from uncomplicated infections for genetic endowment of 4 FBPs. No difference was observed in the distribution of sfbII, fbp54 and sfbI between the blood isolates' and isolates from uncomplicated infection. We conclude that the presence of sfbI does not appear to promote invasive diseases, despite its association with persistence. We also show a higher proportion of group A streptococcus strains isolated from invasive disease cases possess prtFII when compared to strains isolated from non-invasive disease cases. We suggest that S. pyogenes may recruit different FBPs for different purposes.
Resumo:
A newly described non-long terminal repeat (non-LTR) retrotransposon element was isolated from the genome of the Oriental schistosome, Schistosoma japonicum. At least 1000 partial copies of the element, which was named pido, were dispersed throughout the genome of S. japonicum. As is usual with non-LTR retrotransposons, it is expected that many pido elements will be 5'-truncated. A consensus sequence of 3564 bp of the truncated pido element was assembled from several genomic fragments that contained pido-hybridizing sequences. The sequence encoded part of the first open reading frame (ORF), the entire second ORF and, at its 3'-terminus, a tandemly repetitive, A-rich (TA(6)TA(5)TA(8)) tail, The ORF1 of pido encoded a nucleic acid binding protein and ORF2 encoded a retroviral-like polyprotein that included apurinic/apyrimidinic endonuclease (EN) and reverse transcriptase (RT) domains, in that order. Based on its sequence and structure, and phylogenetic analyses of both the RT and EN domains, pido belongs to the chicken repeat 1 (CR1)-like lineage of elements known from the chicken, turtle, puffer fish, mosquitoes and other taxa. pido shared equal similarity with CRI from chicken, an uncharacterized retrotransposon from Caenorhabditis elegans and SR1 (a non-LTR retrotransposon) from the related blood fluke Schistosoma mansoni; the level of similarity between pido and SR1 indicated that these two schistosome retrotransposons were related but not orthologous. The findings indicate that schistosomes have been colonized by at least two discrete CRI-like elements. Whereas pido did not appear to have a tight target site specificity, at least one copy of pido has inserted into the 3'-untranslated region of a protein-encoding gene (GeriBank AW736757) of as yet unknown identity. mRNA encoding the RT of pido was detected by reverse transcription-polymerase chain reaction in the egg, miracidium. and adult developmental stages of S. japonicum, indicating that the RT domain was transcribed and suggesting that pido was replicating actively and mobile within the S. japonicum genome. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Fatty acids inhibit insulin-mediated glucose metabolism in skeletal muscle, an effect largely attributed to defects in insulin-mediated glucose transport. Insulin-resistant mice transgenic for the overexpression of lipoprotein lipase (LPL) in skeletal muscle were used to examine the molecular mechanism(s) in more detail. Using DNA gene chip array technology, and confirmation by RT-PCR and Western analysis, increases in the yeast Sec1p homolog Munc18c mRNA and protein were found in the gastrocnemius muscle of transgenic mice, but not other tissues. Munc18c has been previously demonstrated to impair insulin-mediated glucose transport in mammalian cells in vitro. Of interest, stably transfected C2C12 cells overexpressing LPL not only demonstrated increases in Munc18c mRNA and protein but also in transcription rates of the Munc18c gene. jlr To confirm the relevance of fatty acid metabolism and insulin resistance to the expression of Munc18c in vivo, a 2-fold increase in Munc18c protein was demonstrated in mice fed a high-fat diet for 4 weeks. Together, these data are the first to implicate in vivo increases in Munc18c as a potential contributing mechanism to fatty acid-induced insulin resistance.
Resumo:
This article reviews the progress of a personal endeavour to develop chromatography as a quantitative procedure for the determination of reaction stoichiometries and equilibrium constants governing protein interactions. As well as affording insight into an aspect of chromatography with which many protein chemists are unfamiliar, it shows the way in which minor adaptations of conventional chromatographic practices have rendered the technique one of the most powerful methods available for the characterization of interactions. That pathway towards quantification is followed from the introduction of frontal gel filtration for the study of protein self-association to the characterization of ligand binding by the biosensor variant of quantitative affinity chromatography.
Resumo:
Lipid homeostasis is controlled by the peroxisome proliferator-activated receptors (PPARalpha, -beta/delta, and -gamma) that function as fatty acid-dependent DNA-binding proteins that regulate lipid metabolism. In vitro and in vivo genetic and pharmacological studies have demonstrated PPARalpha regulates lipid catabolism. In contrast, PPARgamma regulates the conflicting process of lipid storage. However, relatively little is known about PPARbeta/delta in the context of target tissues, target genes, lipid homeostasis, and functional overlap with PPARalpha and -gamma. PPARbeta/delta, a very low-density lipoprotein sensor, is abundantly expressed in skeletal muscle, a major mass peripheral tissue that accounts for approximately 40% of total body weight. Skeletal muscle is a metabolically active tissue, and a primary site of glucose metabolism, fatty acid oxidation, and cholesterol efflux. Consequently, it has a significant role in insulin sensitivity, the blood-lipid profile, and lipid homeostasis. Surprisingly, the role of PPARbeta/delta in skeletal muscle has not been investigated. We utilize selective PPARalpha, -beta/delta, -gamma, and liver X receptor agonists in skeletal muscle cells to understand the functional role of PPARbeta/delta, and the complementary and/or contrasting roles of PPARs in this major mass peripheral tissue. Activation of PPARbeta/delta by GW501516 in skeletal muscle cells induces the expression of genes involved in preferential lipid utilization, beta-oxidation, cholesterol efflux, and energy uncoupling. Furthermore, we show that treatment of muscle cells with GW501516 increases apolipoprotein-A1 specific efflux of intracellular cholesterol, thus identifying this tissue as an important target of PPARbeta/delta agonists. Interestingly, fenofibrate induces genes involved in fructose uptake, and glycogen formation. In contrast, rosiglitazone-mediated activation of PPARgamma induces gene expression associated with glucose uptake, fatty acid synthesis, and lipid storage. Furthermore, we show that the PPAR-dependent reporter in the muscle carnitine palmitoyltransferase-1 promoter is directly regulated by PPARbeta/delta, and not PPARalpha in skeletal muscle cells in a PPARgamma coactivator-1-dependent manner. This study demonstrates that PPARs have distinct roles in skeletal muscle cells with respect to the regulation of lipid, carbohydrate, and energy homeostasis. Moreover, we surmise that PPARgamma/delta agonists would increase fatty acid catabolism, cholesterol efflux, and energy expenditure in muscle, and speculate selective activators of PPARbeta/delta may have therapeutic utility in the treatment of hyperlipidemia, atherosclerosis, and obesity.
Resumo:
A transtirretina (TTR) é uma proteína plasmática constituída por quatro subunidades idênticas de aproximadamente 14KDa e de massa molecular de 55 KDa (Blake et al., 1978). A TTR é responsável pelo transporte de tiroxina (T4) (Andrea et al., 1980) e retinol (vitamina A), neste último tipo de transporte através da ligação à proteina de ligação ao retinol (RBP) (Kanai et al., 1968). É sintetizada principalmente pelo fígado e secretada para o sangue (Murakami et al., 1987) e também sintetizada pelas células epiteliais do plexo coróide e secretada para o líquido cefaloraquidiano (LCR) (Aleshire et al., 1983). Existem outros locais que expressam TTR mas em menor quantidade, nomeadamente: a retina do olho (Martone et al., 1988), o pâncreas (Kato et al., 1985), o saco vitelino visceral (Soprano et al., 1986) o intestino (Loughna et al., 1995); o estômago, coração, músculo e baço (Soprano et al., 1985). A TTR é uma proteína, do ponto de vista filogenético, extremamente conservada o que já de si é um indicador da sua importância biológica (Richardson, 2009) O objectivo deste trabalho foi avaliar a expressão de transtirretina ao longo do sistema gastrointestinal do murganho, nos seguintes órgãos esófago, estômago, duodeno, cólon e também bexiga, com cerca de 3 meses de idade. O segundo objectivo foi identificar as células responsáveis por essa expressão, nos órgãos em estudo. Foi possível verificar que apenas o estômago apresenta valores de expressão normalizada de TTR diferente de zero, expressão essa muito inferior à do fígado, tal como se esperava. Por imunohistoquímica/imunofluorescência foi possível determinar que as células que expressam TTR são pouco abundantes e estão presentes na região glandular do estômago do murganho e também do humano. Para além disto, verificou-se que a TTR co-localiza com somatostatina e que as células que sintetizam TTR correspondem às células D, responsáveis pela secreção de somatostatina
Resumo:
Dissertação de Mestrado, Biotecnologia em Controlo Biológico, 27 de Junho de 2013, Universidade dos Açores.
Resumo:
Febs Journal (2009)276:1776-1786
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Biotecnologia
Resumo:
This work compared the time at which negative seroconversion was detected by conventional serology (CS) and by the ELISA-F29 test on a cohort of chronic chagasic patients treated with nifurtimox or benznidazole. A retrospective study was performed using preserved serum from 66 asymptomatic chagasic adults under clinical supervision, and bi-annual serological examinations over a mean follow-up of 23 years. Twenty nine patients received trypanocide treatment and 37 remained untreated. The ELISA-F29 test used a recombinant antigen which was obtained by expressing the Trypanosoma cruzi flagellar calcium-binding protein gene in Escherichia coli. Among the untreated patients, 36 maintained CS titers. One patient showed a doubtful serology in some check-ups. ELISA-F29 showed constant reactivity in 35 out of 37 patients and was negative for the patient with fluctuating CS. The treated patients were divided into three groups according to the CS titers: in 13 they became negative; in 12 they decreased and in four they remained unchanged. ELISA-F29 was negative for the first two groups. The time at which negativization was detected was significantly lower for the ELISA-F29 test than for CS, 14.5 ± 5.7 and 22 ± 4.9 years respectively. Negative seroconversion was observed in treated patients only. The results obtained confirm that the ELISA-F29 test is useful as an early indicator of negative seroconversion in treated chronic patients.
Resumo:
Patients with pseudohypoparathyroidism type Ib (PHP-Ib) present hypocalcemia and hyperphosphatemia, as a consequence of a resistance to PTH action, through its G-protein-coupled receptor, in the renal tubules. This resistance results from tissue-specific silencing of the G-protein alpha-subunit (G(s)α), due to imprinting disruption of its encoding locus--GNAS. In familial PHP-Ib, maternally inherited deletions at the STX16 gene are associated to a regional GNAS methylation defect. In sporadic PHP-Ib, broad methylation changes at GNAS arise from unknown genetic causes. In this study, we describe the clinical presentation of PHP-Ib in four Portuguese patients (two of whom were siblings), and provide further insight for the management of patients with this disease. The diagnosis of PHP-Ib was made after detection of GNAS imprinting defects in each of the cases. In the siblings, a regional GNAS methylation change resulted from a known 3.0 kb STX16 deletion. In the other two patients, the broad methylation defects at GNAS, which were absent in their relatives, resulted from genetic alterations that remain to be identified. We report the first clinical and genetic study of Portuguese patients with PHP-Ib. The genetic identification of a hereditary form of this rare disease allowed an early diagnosis, and may prevent hypocalcemia-related complications.
Resumo:
Dissertação para obtenção do Grau de Mestre em Bioquímica