947 resultados para Error de medida


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Capítulos de este documento disponibles separadamente (3611.00, 4912.00 y 3336.00)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Incluye Bibliografía

Relevância:

20.00% 20.00%

Publicador:

Resumo:

El documento contiene una lista de errores detectados por el compilador WATFOR/360

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Semi-supervised learning is applied to classification problems where only a small portion of the data items is labeled. In these cases, the reliability of the labels is a crucial factor, because mislabeled items may propagate wrong labels to a large portion or even the entire data set. This paper aims to address this problem by presenting a graph-based (network-based) semi-supervised learning method, specifically designed to handle data sets with mislabeled samples. The method uses teams of walking particles, with competitive and cooperative behavior, for label propagation in the network constructed from the input data set. The proposed model is nature-inspired and it incorporates some features to make it robust to a considerable amount of mislabeled data items. Computer simulations show the performance of the method in the presence of different percentage of mislabeled data, in networks of different sizes and average node degree. Importantly, these simulations reveals the existence of the critical points of the mislabeled subset size, below which the network is free of wrong label contamination, but above which the mislabeled samples start to propagate their labels to the rest of the network. Moreover, numerical comparisons have been made among the proposed method and other representative graph-based semi-supervised learning methods using both artificial and real-world data sets. Interestingly, the proposed method has increasing better performance than the others as the percentage of mislabeled samples is getting larger. © 2012 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work we analyze the convergence of solutions of the Poisson equation with Neumann boundary conditions in a two-dimensional thin domain with highly oscillatory behavior. We consider the case where the height of the domain, amplitude and period of the oscillations are all of the same order, and given by a small parameter e > 0. Using an appropriate corrector approach, we show strong convergence and give error estimates when we replace the original solutions by the first-order expansion through the Multiple-Scale Method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ensayo presentado en homenaje a Raúl Prebisch

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Incluye Bibliografía

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Currently, there has been an increasing demand for operational and trustworthy digital data transmission and storage systems. This demand has been augmented by the appearance of large-scale, high-speed data networks for the exchange, processing and storage of digital information in the different spheres. In this paper, we explore a way to achieve this goal. For given positive integers n,r, we establish that corresponding to a binary cyclic code C0[n,n-r], there is a binary cyclic code C[(n+1)3k-1,(n+1)3k-1-3kr], where k is a nonnegative integer, which plays a role in enhancing code rate and error correction capability. In the given scheme, the new code C is in fact responsible to carry data transmitted by C0. Consequently, a codeword of the code C0 can be encoded by the generator matrix of C and therefore this arrangement for transferring data offers a safe and swift mode. © 2013 SBMAC - Sociedade Brasileira de Matemática Aplicada e Computacional.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pós-graduação em Ciência e Tecnologia de Materiais - FC

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pós-graduação em Física - IGCE