996 resultados para Dielectric Barrier discharge reactor


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ir and Ni Schottky contacts on strained Al0.25Ga0.75N/GaN heterostructures, and the Ni Schottky contact with different areas on strained Al0.3Ga0.7N/GaN heterostructures have been prepared. Using the measured capacitance-voltage curves and the current-voltage curves obtained from the prepared Schottky contacts, the polarization charge densities of the AlGaN barrier layer for the Schottky contacts were analyzed and calculated by self-consistently solving Schrodinger's and Poisson's equations. It is found that the polarization charge density of the AlGaN barrier layer for the Ir Schottky contact on strained Al0.25Ga0.75N/GaN heterostructures is different from that of the Ni Schottky contact, and the polarization charge densities of the AlGaN barrier layer for Ni Schottky contacts with different areas on strained Al0.3Ga0.7N/GaN heterostructures are different corresponding to different Ni Schottky contact areas. As a result, the conclusion can be made that Schottky contact metals on strained AlGaN/GaN heterostructures have an influence on the strain of the AlGaN barrier layer. (C) 2008 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using the measured capacitance-voltage curves and the photocurrent spectrum obtained from the Ni Schottky contact on a strained Al0.3Ga0.7N/GaN heterostructure, the value of the relative permittivity of the AlGaN barrier layer was analysed and calculated by self-consistently solving Schrodinger's and Poisson's equations. It is shown that the calculated values of the relative permittivity are different from those formerly reported, and reverse biasing the Ni Schottky contact has an influence on the value of the relative permittivity. As the reverse bias increases from 0 V to - 3 V, the value of the relative permittivity decreases from 7.184 to 7.093.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By replacing the flat (Ga1-xAlx)As barrier layer with a trapezoidal AlxGa1-xAs barrier layer, a conventional heterostructure can be operated in enhancement mode. The sheet density of two-dimensional electron gas (2DEG) in the structure can be tuned linearly from N-2D = 0.3 x 10(11) cm(-2) to N-2D = 4.3 x 10(11) cm(-2) by changing the bias on the top gate. The present scheme for gated heterostructures is easy to fabricate and does not require the use of self-alignment photolithography or the deposition of insulating layers. In addition, this scheme facilitates the initial electrical contact to 2DEG. Although, the highest electron mobility obtained for the moment is limited by the background doping level of heterostructures, the mobility should be improved substantially in the future. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The gain mechanism in GaN Schottky barrier ultraviolet photodetectors is investigated by focused light beam. When the incident light illuminates the central region of the Schottky contact electrode, the responsivity changes very little with the increase of reverse bias voltage. However, when the incident light illuminates the edge region of the electrode, the responsivity increases remarkably with the increase of reverse bias voltage, and the corresponding quantum efficiency could be even higher than 100%. It is proposed that the surface states near the edge of the electrode may lead to a reduction of effective Schottky barrier height and an enhancement of electron injection, resulting in the anomalous gain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electric-tunable spin-independent magneto resistance effect has been theoretically investigated in ballistic regime within a two-dimensional electron gas modulated by magnetic-electric barrier nanostructure. By including the omitted stray field in previous investigations oil analogous structures, it is demonstrated based on this improved approximation that the magnetoresistance ratio for the considered structure can be efficiently enhanced by a proper electric barrier up to the maximum value depending on the specific magnetic suppression. Besides, it is also shown the introduction of positive electrostatic modulation can effectively overcome the degradation of magnetoresistance ratio for asymmetric configuration and enhance the visibility of periodic pattern induced by the size effect, while for an opposite modulation the system magnetoresistance ratio concerned may change its sign. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CaCu3Ti(4-x)Nb(x)O(12) (x = 0, 0.01, 0.08, 0.2) ceramics were fabricated by a conventional solid-state reaction method. The ceramics showed the body-centered cubic structure without any foreign phases and the grain size decreases with Nb doping. Two Debye-type relaxations were observed for the Nb-doped samples at low frequency and high frequency, respectively. The complex electric modulus analysis revealed that the surface layer, grains and grain boundaries contributed to the dielectric constant. The low-frequency dielectric constant relative to the surface layer decreased to a minimum and then increased with the dc bias voltage at 100 Hz, which were well explained in terms of a model containing two metal oxide semiconductors in series, confirming the surface layer in the ceramics. The shift voltage V-B corresponding to the minimal capacitance increased with increase of the composition x. (C) 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AlGaN/GaN heterostructure using unintentionally doped AlN/GaN superlattices (SLs) as barrier layer is grown on C-plane sapphire by metal organic vapor deposition (MOCVD). Compared with the conventional Si-doped structure, electrical property is improved. An average sheet resistance of 287.1 Omega/square and high resistance uniformity of 0.82% are obtained across the 2-inch epilayer wafer with an equivalent Al composition of 38%. Hall measurement shows that the mobility of two-dimensional electron gas (2DEG) is 1852 cm(2)/V s with a sheet carrier density of 1.2 x 10(13) cm(-2) at room temperature. The root mean square roughness (RMS) value is 0.159 nm with 5 x 5 mu m(2) scan area and the monolayer steps are clearly observed. The reason for the property improvement is discussed. (c) 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Optically pumped GaN-based vertical cavity surface-emitting laser (VCSEL) with two Ta2O5/SiO2 dielectric distributed Bragg reflectors (DBRs) was fabricated via a simplifled procedure direct deposition of the top DBR onto the GaN surface exposed after substrate removal and no use of etching and polishing processes. Blue-violet lasing action was observed at a wavelength of 397.3 ran under optical pumping at room temperature with a threshold pumping energy density of about 71.5 mJ/cm(2). The laser action was further confirmed by a narrow emission linewidth of 0.13 nm and a degree of polarization of about 65%. The result suggests that practical blue-violet GaN-bsaed VCSEL can be realized by optimizing the laser lift-off technique for substrate removal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrical properties of AlyGa1-yN/AlxGa1-xN/AlN/GaN structure are investigated by solving coupled Schrodinger and Poisson equation self-consistently. Our calculations show that the two-dimensional electron gas (2DEG) density will decrease with the thickness of the second barrier (AlyGa1-yN) once the AlN content of the second barrier is smaller than a critical value y(c), and will increase with the thickness of the second barrier (AlyGa1-yN) when the critical AlN content of the second barrier y(c) is exceeded. Our calculations also show that the critical AlN content of the second barrier y(c) will increase with the AlN content and the thickness of the first barrier layer (AlxGa1-xN).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gadolinium oxide thin films have been prepared on silicon (100) substrates with a low-energy dual ion-beam epitaxial technique. Substrate temperature was an important factor to affect the crystal structures and textures in an ion energy range of 100-500 eV. The films had a monoclinic Gd2O3 structure with preferred orientation ((4) over bar 02) at low substrate temperatures. When the substrate temperature was increased, the orientation turned to (202), and finally, the cubic structure appeared at the substrate temperature of 700 degreesC, which disagreed with the previous report because of the ion energy. The AES studies found that Gadolinium oxide shared Gd2O3 structures, although there were a lot of oxygen deficiencies in the films, and the XPS results confirmed this. AFM was also used to investigate the surface images of the samples. Finally, the electrical properties were presented. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have calculated the in-plane conductance of a barrier with the Dresselhaus spin-orbit interaction, which is sandwiched between two spin-polarized materials aligned arbitrarily. Besides a transmitted in-plane current which arises on the drain side as pointed out in Phys. Rev. Lett. 93, 056601 (2004), a reflected in-plane current always appears simultaneously on the source side near the interface of the barrier. The spin polarization of the source affects the transmitted current more than the reflected one, and conversely the spin polarization of the drain affects the reflected current more. The relationship between transmitted current and the reflected one has been studied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spin-dependent tunneling through a symmetric semiconductor barrier is studied including the k(3) Dresselhaus effect. The spin-dependent transmission of an electron can be obtained analytically. By comparing with previous work [Phys. Rev. B 67, 201304(R) (2003) and Phys. Rev. Lett. 93, 056601 (2004)], it is shown that the spin polarization and interface current are changed significantly by including the off-diagonal elements in the current operator, and can be enhanced considerably by the Dresselhaus effect in the contact regions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By integrating a three-barrier, two-well resonant tunneling structure with a 1.2-mu m-thick, slightly doped n-GaAs layer, a photoinduced voltage shift on the order of magnitude of 100 mV in resonant current peaks has been verified at an irradiance of low light power density. The 1.2-mu m-thick, slightly doped n-GaAs layer manifests itself of playing an important role in enhancing photoelectric sensitivity. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have calculated the photoelectric response in a specially designed double barrier structure. It has been verilied that a transfer of the internal photovoltaic effect in the quantum well to the tunnelling transport through above-barrier quasibound states of the emitter barrier may give rise to a remarkable photocurrent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using the measured capacitance- voltage curves of Ni Schottky contacts with different areas on strained AlGaN/ GaN heterostructures and the current- voltage characteristics for the AlGaN/ GaN heterostructure field- effect transistors at low drain- source voltage, we found that the two- dimensional electron gas (2DEG) electron mobility increased as the Ni Schottky contact area increased. When the gate bias increased from negative to positive, the 2DEG electron mobility for the samples increased monotonically except for the sample with the largest Ni Schottky contact area. A new scattering mechanism is proposed, which is based on the polarization Coulomb field scattering related to the strain variation of the AlGaN barrier layer. (C) 2007 American Institute of Physics.