953 resultados para Continuum Fingerboard
Resumo:
The thermodynamic properties of a selected set of benchmark hydrogen-bonded systems (acetic acid dimer and the complexes of acetic acid with acetamide and methanol) was studied with the goal of obtaining detailed information on solvent effects on the hydrogen-bonded interactions using water, chloroform, and n-heptane as representatives for a wide range in the dielectric constant. Solvent effects were investigated using both explicit and implicit solvation models. For the explicit description of the solvent, molecular dynamics and Monte Carlo simulations in the isothermal isobaric (NpT) ensemble combined with the free energy perturbation technique were performed to determine solvation free energies. Within the implicit solvation approach, the polarizable continuum model and the conductor-like screening model were applied. Combination of gas phase results with the results obtained from the different solvation models through an appropriate thermodynamic cycle allows estimation of complexation free energies, enthalpies, and the respective entropic contributions in solution. Owing to the strong solvation effects of water the cyclic acetic acid dimer is not stable in aqueous solution. In less polar solvents the double hydrogen bond structure of the acetic acid dimer remains stable. This finding is in agreement with previous theoretical and experimental results. A similar trend as for the acetic acid dimer is also observed for the acetamide complex. The methanol complex was found to be thermodynamically unstable in gas phase as well as in any of the three solvents. (C) 2010 Wiley Periodicals, Inc. J Comput Chem 31: 2046-2055, 2010
Resumo:
A simple and easy synthesis of ten arylamidoximes from arylnitriles and hydroxylamine is described. The formation of the arylamides has been observed to a much lesser extent in the present work. A new mechanism for the formation of arylamidoximes, as well as arylamides, from arylnitriles and hydroxylamine is suggested. Quantum mechanical calculations have been carried out to support this mechanism. The enthalpy of formation in conjunction with atomic charges of the reactants and intermediates helped to understand more about the generation of the products.
Resumo:
Betaine dyes are known to show very large transition energy shifts in different solvents. The ortho-betaine molecule - a simple two-ring prototype of the E-T(30) Reichardt dye - has been investigated theoretically from a combined statistical and quantum mechanics approach. Using sequential Monte Carlo (MC) simulations and MP2/cc-pVDZ calculations the in-water dipole moment of ortho-betaine is obtained as 12.30 +/- 0.05 D. This result shows a considerable increase of 75% compared to the in-vacuum dipole moment. For comparison, the use of a polarizable continuum model using the same MP2/cc-pVDZ leads to an in-water dipole moment of 11.6 D, in good agreement. This large polarization is incorporated in the classical potential for another MC simulation to generate solute-solvent configurations and to obtain the contribution of the polarization effect in the solvatochromic shift. Using statistically uncorrelated configurations and supermolecular INDO/CIS calculations, including the solute and, explicitly, 230 solvent water molecules, the statistically converged calculated shift is obtained here as 6360 cm(-1), in good agreement with the experimental result of 7550 cm(-1). (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
We use the continuum discretized coupled channel method to study the effects of breakup on different reaction mechanisms for the (8)B + (58)Ni system. We devote special attention to the role of continuum-continuum couplings.
Resumo:
Topological interactions will be generated in theories with compact extra dimensions where fermionic chiral zero modes have different localizations. This is the case in many warped extra dimension models where the right-handed top quark is typically localized away from the left-handed one. Using deconstruction techniques, we study the topological interactions in these models. These interactions appear as trilinear and quadrilinear gauge boson couplings in low energy effective theories with three or more sites, as well as in the continuum limit. We derive the form of these interactions for various cases, including examples of Abelian, non-Abelian and product gauge groups of phenomenological interest. The topological interactions provide a window into the more fundamental aspects of these theories and could result in unique signatures at the Large Hadron Collider, some of which we explore.
Resumo:
In this work we present a double folding optical model analysis of new near-barrier quasi-elastic experimental data for the (6,7)Li + (120)Sn systems. From the analysis, it was possible to confirm the ground-state nucleon densities assumed for the weakly bound (6,7)Li isotopes. The apparent discrepancies between the experimental densities and those based on Dirac-Hartree-Fock Bogoliubov (DHB) calculations were removed. A new approach that simulates the projectile break-up and a positive polarization from couplings of (6,7)Li bound states with the continuum was considered in the reaction mechanism. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
A study of the kinematics of the alpha-d coincidences in the (6)Li + (59)Co system at a bombarding energy of E(lab) = 29.6MeV is presented. With exclusive measurements performed over different angular intervals it is possible to identify the respective contributions of the sequential and direct projectile breakup components. The angular distributions of both breakup components are fairly well described by the Continuum-Discretized Coupled-Channels framework (CDCC). Furthermore, a careful analysis of these processes using a semiclassical approach provides information on both their lifetime and their distance of occurrence with respect to the target. Breakup to the low-lying (near-threshold) continuum is delayed, and happens at large internuclear distances. This suggests that the influence of the projectile breakup on the complete fusion process can be related essentially to the direct breakup to the (6)Li high-lying continuum spectrum.
Resumo:
The reactions induced by the weakly bound (6)Li projectile interacting with the intermediate mass target (59)Co were investigated. Light charged particles singles and alpha-d coincidence measurements were performed at the near barrier energies E(lab) = 17.4, 21.5, 25.5 and 29.6 MeV. The main contributions of the different competing mechanisms are discussed. A statistical model analysis. Continuum-Discretized Coupled-Channels (CDCC) calculations and two-body kinematics were used as tools to provide information to disentangle the main components of these mechanisms. A significant contribution of the direct breakup was observed through the difference between the experimental sequential breakup cross section and the CDCC prediction for the non-capture breakup cross section. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Cross sections for the (6)Li(p,gamma)(7)Be, (7)Li(n,gamma)(8)Li (8)Li(n,gamma)(9)Li and (8)Li(p,gamma)(9)Be capture reactions have been investigated in the framework of the potential model. The main ingredients of the potential model are the potentials used to generate the continuum and bound-state wave functions and spectroscopic factors of the corresponding bound systems. The spectroscopic factors for the (7)Li circle times n=(8)Li(gs), (8)Li circle times n=(9)Li(gs) bound systems were obtained from a FR-DWBA analysis of neutron transfer reactions induced by (8)Li radioactive beam on a (9)Be target, while spetroscopic factor for the (8)Li circle times n=(9)Be(gs) bound system were obained from a proton transfer reaction. From the obtained capture reaction cross section, reaction rate for the (8)Li(n,gamma)(9)Li and (8)Li(p,gamma)(9)Be direct neutron and proton capture were determined and compared with other experimental and calculated values.
Resumo:
This work investigates the two-photon absorption spectrum of perylene tetracarboxylic derivatives using the white-light continuum Z-scan technique. Perylene derivatives present relatively high two-photon absorption cross-section, which makes them attractive for applications in photonics. Because of the spectral resolution of the white-light continuum Z-scan, we were able to observe a well defined structure in the two-photon absorption spectrum, composed by two distinct peaks. These peaks, as well as the resonant enhancement of the nonlinearity, were modeled using the sum-over-states approach considering a four-level energy diagram with two final two-photon states. The existence of such states was confirmed using the response function formalism within the DFT framework. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The solvatochromism and other spectroscopic and photophysical characteristics of four azo disperse dyes, derived from 2-amino-5-nitrothiazole, were evaluated and interpreted with the aid of experimental data and quantum mechanical calculations. For the non-substituted compound two conformers, E and Z, were proposed for the isolated molecules, being the second one considerably less stable. The optimization of these structures in combination with a SCRF methodology (IEFPCM, Simulating the molecules in a continuum dielectric with characteristics of methanol), suggests that the Z form is not stable in solution. This same behaviour is expected for the substituted compounds, which is corroborated by experimental data presented in previous investigations [A.E.H. Machado, L.M. Rodrigues, S. Gupta, A.M.F. Oliveira-Campos, A.M.S. Silva, J. Mol. Struct. 738 (2005) 239-245]. For the substituted compounds, two forms derived from E conformer (A and R) are possible. Quantum mechanical data suggest for the isolated molecules, that the low energy absorption hand of the E conformers involve at least two close electronic states. having the low-lying excited state a (1)(n,pi*) nature, and being the S-2 state attributed to a (1)(pi,pi*) transition. The data also suggest a small energy gap between the absorption peaks of A and B, related to the easy conversion between these forms. For the structures optimized in combination with the applied SCRF methodology, an states inversion is observed for the Substituted compounds, with a considerable diminish of the energy gap between A and B absorption peaks. The electronic spectra of these compounds are quite sensitive to changes in the solvent polarity. The positive solvatochromism is more evident in aprotic solvents, probably due to the polarization induced by the solute. These compounds do not fluoresce at 298 K, but present a small but perceptible fluorescence at 77 K, which seems to be favoured by the nature of the group in the 2 `-position of the phenyl ring. Moreover, such compounds present expressive values for first hyperpolarizability, which implies in good non-linear optics (NLO) responses and photoswitching capability. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Excited state absorption and excited state dynamics of indocyanine-green (ICG) dissolved in dymethyl sulfoxide were measured using white-light continuum Z-scan (WLCZScan) and white-light continuum pump-probe (WLCPP) techniques. The excited state absorption spectrum, obtained through Z-scan measurements, revealed saturable absorption (SA) for wavelengths longer than 630 nm, while reverse saturable absorption (RSA) appeared, as indicated by a band at approximately 570 nm. Both processes were modeled by a three-energy-level diagram, from which the excited state cross-section values were determined. SA and RSA were also observed in pump-probe experiments, with a recovery time in the hundreds of picoseconds time scale due to the long lifetime of the first excited state of ICG. Such results contribute to the understanding of ICG optical properties, allowing application in photonics and medicine. Copyright (C) 2010 John Wiley & Sons, Ltd.
Resumo:
This paper explores the structural continuum in CATH and the extent to which superfamilies adopt distinct folds. Although most superfamilies are structurally conserved, in some of the most highly populated superfamilies (4% of all superfamilies) there is considerable structural divergence. While relatives share a similar fold in the evolutionary conserved core, diverse elaborations to this core can result in significant differences in the global structures. Applying similar protocols to examine the extent to which structural overlaps occur between different fold groups, it appears this effect is confined to just a few architectures and is largely due to small, recurring super-secondary motifs (e.g., alpha beta-motifs, alpha-hairpins). Although 24% of superfamilies overlap with superfamilies having different folds, only 14% of nonredundant structures in CATH are involved in overlaps. Nevertheless, the existence of these overlaps suggests that, in some regions of structure space, the fold universe should be seen as more continuous.
Resumo:
Linear covariant gauges, such as Feynman gauge, are very useful in perturbative calculations. Their non-perturbative formulation is, however, highly non-trivial. In particular, it is a challenge to define linear covariant gauges on a lattice. We consider a class of gauges in lattice gauge theory that coincides with the perturbative definition of linear covariant gauges in the formal continuum limit. The corresponding gauge-fixing procedure is described and analyzed in detail, with an application to the pure SU(2) case. In addition, results for the gluon propagator in the two-dimensional case are given. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Unexpectedly, the Fano resonance caused by the interference of continuum electron excitations with the longitudinal optical (LO) phonons was observed in random porous Si by Raman scattering. The analysis of the experimental data shows that the electron states trapped at the Si-SiO(2) interface dominate in the observed Raman scattering. The gap energy associated with the interface states was determined. Copyright (C) 2011 John Wiley & Sons, Ltd.