995 resultados para ACID DYE
Resumo:
An undergraduate experiment that illustrates the phenomenon of perichromism-the sensitivity of a dye to its microenvironment, as assessed by color changes of its solutions-is described. An easily prepared perichromic imine is synthesized and characterized, and its solvatochromism, thermochromism, halochromism, and preferential solvation in binary solvent mixtures are demonstrated by visual inspection of its solutions. The results are rationalized by invoking solute - solvent interactions in the various media.
Resumo:
In the present study, a high-surface area activated carbon was prepared by chemical activation of lemon peel with H3PO4 as the active agent. Then, the adsorption behavior of Malachite green dye and Pb(II) ions on the produced activated carbon was studied. Batch process was employed for sorption kinetics and equilibrium studies. Experimental data were ï¬tted to various isotherm models. According to the Langmuir model, the maximum adsorption capacities of Malachite green dye and Pb(II) ions were found to be 66.67 and 90.91 mg g-1, respectively, at room temperature. Kinetic studies showed the adsorption process followed a pseudo second-order rate model. The sorption kinetics were controlled by intra-particle diffusion. The results indicated that the produced activated carbon can be economically and effectively used as an adsorbent for the removal of Malachite green dye and Pb(II) ions from wastewaters.
Resumo:
The optimization of the anaerobic degradation of the azo dye Remazol golden yellow RNL was performed according to multivariate experimental designs: a 2² full-factorial design and a central composite design (CCD). The CCD revealed that the best incubation conditions (90% color removal) for the degradation of the azo dye (50 mg L- 1) were achieved with 350 mg L- 1 of yeast extract and 45 mL of anaerobic supernatant (free cell extract) produced from the incubation of 650 mg L- 1 of anaerobic microorganisms and 250 mg L- 1 of glucose. A first-order kinetics model best fit the experimental data (k = 0.0837 h- 1, R² = 0.9263).
Resumo:
The stability constants of the 1:1 complexes formed between M2+ (M2+: Mn2+, Ni2+, Cu2+, or Cd2+) and BMADA2- (BMADA: 2,2'-(5-bromo-6-methylpyrimidine-2,4 diyl)bis(azanediyl)dipropanoic acid) were determined by potentiometric pH titration in aqueous solution (I = 0.1 mol L-1, NaNO3, 25 °C). The stability of the binary M - BMADA complexes is determined by the basicity of the carboxyl or amino groups. All the stability constants reported in this work exhibit the usual trend, and the order obtained was Mn2+< Ni2+ < Cu2+ > Cd2+. The observed stability order for BMADA approximately follows the Irving - Williams sequence. In the M - BMADA complexes, the M ion is able to form a macrochelate via the pyrimidine group of BMADA.
Resumo:
The Direct Black 22 dye was electrooxidized at 30 mA cm-2 in a flow cell using a BDD or β-PbO2 anode, varying pH (3, 7, 11), temperature (10, 25, 45 °C), and [NaCl] (0 or 1.5 g L-1). In the presence of NaCl, decolorization rates were similar for all conditions investigated, but much higher than predicted through a theoretical model assuming mass-transport control; similar behavior was observed for COD removal (at pH 7, 25 °C), independently of the anode. With no NaCl, COD removals were also higher than predicted with a theoretical model, which suggests the existence of distinct dye degradation pathways.
Resumo:
An improved method based on reverse flow injection is proposed for determining sulfate concentration in the wet-process of phosphoric acid (WPA). The effect of reagent composition, flow rate, temperature, acid concentration, length of the reaction coil, and linear response range on the flow system is discussed in detail. Optimal conditions are established for determining sulfate in the WPA samples. Baseline drift is avoided by a periodic washing step with EDTA in an alkaline medium. A linear response is observed within a range of 20 - 360 mg L-1, given by the equation A = 0.0020C (mg L-1) + 0.0300, R² = 0.9991. The detection limit of the proposed method for sulfate analysis is 3 mg L-1, and the relative standard deviation (n = 12) of sulfate absorbance peak is less than 1.60%. This method has a rate of up to 29 samples per hour, and the results compare well with those obtained with gravimetric method.
Resumo:
In this work, a spectrophotometric methodology was applied in order to determine epinephrine (EP), uric acid (UA), and acetaminophen (AC) in pharmaceutical formulations and spiked human serum, plasma, and urine by using a multivariate approach. Multivariate calibration methods such as partial least squares (PLS) methods and its derivates were used to obtain a model for simultaneous determination of EP, UA and AC with good figures of merit and mixture design was in the range of 1.8 - 35.3, 1.7 - 16.8, and 1.5 - 12.1 µg mL-1. The 2nd derivate PLS showed recoveries of 95.3 - 103.3, 93.3 - 104.0, and 94.0 - 105.5 µg mL-1 for EP, UA, and AC, respectively.
Resumo:
On the basis of theoretical B3LYP calculations, Yáñez and co-workers (J. Chem. Theory Comput. 2012, 8, 2293) illustrated that beryllium ions are capable of significantly modulating (changing) the electronic structures of imidazole. In this computational organic chemistry study, the interaction of this β-amino acid and five model Lewis acids (BeF1+, Be2+, AlF2(1+), AlF2+, and Al3+) were investigated. Several aspects were addressed: natural bond orbitals, including second order perturbation analysis of intra-molecular charge delocalization and the natural population analysis atomic charges; molecular geometries; selected infrared stretching frequencies (C-N, C-O, and N-H), and selected ¹H-NMR chemical shifts. The data illustrate that this interaction can weaken the H-O bond and goes beyond strengthening the intra-molecular hydrogen bond (N...H-O) to cause a spontaneous transfer of the proton to the nitrogen atom in five cases generating zwitterion structures. Many new features are observed. Most importantly, the zwitterion structures include a stabilizing hydrogen bond (N-H...O) that varies in relative strength according to the Lewis acid. These findings explain the experimental observations of α-amino acids (for example: J. Am. Chem. Soc. 2001, 123, 3577) and are the first reported fundamental electronic structure characterization of β-amino acids in zwitterion form.
Resumo:
In this work, we report the Biginelli-type reaction between various aldehydes, acetophenones and urea systems in the presence of sulfonic acid functionalized silica (SBA-Pr-SO3H) under solvent-free conditions, which led to 4,6-diarylpyrimidin-2(1H)-ones derivatives. SBA-Pr-SO3H with a pore size of 6 nm was found to be an efficient heterogeneous solid acid catalyst for this reaction which led to high product yields, was environmentally benign with short reaction times and easy handling.
Resumo:
A simple and sensitive spectrophotometric method is proposed for the simultaneous determination of protocatechuic acid and protocatechuic aldehyde. The method is based on the difference in the kinetic rates of the reactions of analytes with [Ag(NH3)2]+ in the presence of polyvinylpyrrolidone to produce silver nanoparticles. The data obtained were processed by chemometric methods using principal component analysis artificial neural network and partial least squares. Excellent linearity was obtained in the concentration ranges of 1.23-58.56 µg mL-1 and 0.08-30.39 µg mL-1 for PAC and PAH, respectively. The limits of detection for PAC and PAH were 0.039 and 0.025 µg mL-1, respectively.
Resumo:
A series of six new palmitic acid-based neoglycolipids related to Papulacandin D were synthesized in five steps, resulting in good yields, and they were evaluated against Candida spp. All twelve synthetic intermediates were also evaluated. The synthesis involved the initial glycosylation of two phenols (4-hydroxy-3-methoxybenzaldehyde and 3-hydroxybenzaldehyde) via their reaction with peracetylated glucosyl bromide. This was followed by deacetylation with potassium methoxide/metanol solution and the protection of two hydroxyls (C4 and C6 positions) of the saccharide unit as benzilidene acetals (10-11). The next step involved the acylation of the acetal derivatives with palmitic acid, thereby affording a mixture of two isomers mono-acylated at the C2 and C3 positions and a di-acylated product (12-17). After being isolated, each compound was subjected to the removal of the acetal protecting group to yield the papulacandin D analogues 18-23. Three compounds showed low antifungal activity against two species: C. albicans (compounds 7 and 23) and C. tropicalis (compound 17) at 200 µg mL−1.
Resumo:
An interesting practical experiment about the preparation of dye–sensitized solar cells (DSSC) using natural dyes were carried out by the undergraduate students in the chemistry course at UNICAMP . Natural dyes were extracted from blueberries (Vaccinium myrtillus L.), jabuticabas (Myrciaria cauliflora), raw and cooked beets (Beta vulgaris L.), and annattos (Bixa orellana L.), which were used to sensitize TiO2 films that composed the photoanode in the DSSC. A polymer electrolyte containing an iodide/triiodide redox couple was used in lieu of the use of liquid solutions to prevent any leakage in the devices. A maximum solar-to-electric energy conversion of 0.26 ± 0.02% was obtained for the solar cell prepared with annatto extracts. This experiment was an effective way to illustrate to the undergraduate students how to apply some of the chemical concepts that they learned during their chemistry course to produce electric energy from a clean and renewable energy source. Teachers could also exploit the basics of the electronic transitions in inorganic and organic compounds (e.g., metal-to-ligand charge transfer and ϖ-ϖ* transitions), thermodynamics (e.g., Gibbs free energy), acid–base reactions in the oxide solid surface and electrolyte, and band theory (i.e., the importance of the Fermi level energy).