983 resultados para A-type zeolite membrane


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The crystal structures of two oligopeptides containing di-n-propylglycine (Dpg) residues, Boc-Gly-Dpg-Gly-Leu-OMe (1) and Boc-Val-Ala-Leu-Dpg-Val-Ala-Leu-Val-Ala-Leu-Dpg-Val-Ala-Leu-OMe (2) are presented. Peptide 1 adopts a type I-turn conformation with Dpg(2)-Gly(3) at the corner positions. The 14-residue peptide 2 crystallizes with two molecules in the asymmetric unit, both of which adopt -helical conformations stabilized by 11 successive 5 1 hydrogen bonds. In addition, a single 4 1 hydrogen bond is also observed at the N-terminus. All five Dpg residues adopt backbone torsion angles (, ) in the helical region of conformational space. Evaluation of the available structural data on Dpg peptides confirm the correlation between backbone bond angle NCC() and the observed backbone , values. For > 106° , helices are observed, while fully extended structures are characterized by < 106° . The mean values for extended and folded conformations for the Dpg residue are 103.6° ± 1.7° and 109.9° ± 2.6° , respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Though silicon tunnel field effect transistor (TFET) has attracted attention for sub-60 mV/decade subthreshold swing and very small OFF current (IOFF), its practical application is questionable due to low ON current (ION) and complicated fabrication process steps. In this paper, a new n-type classical-MOSFET-alike tunnel FET architecture is proposed, which offers sub-60 mV/decade subthreshold swing along with a significant improvement in ION. The enhancement in ION is achieved by introducing a thin strained SiGe layer on top of the silicon source. Through 2D simulations it is observed that the device is nearly free from short channel effect (SCE) and its immunity towards drain induced barrier lowering (DIBL) increases with increasing germanium mole fraction. It is also found that the body bias does not change the drive current but after body current gets affected. An ION of View the MathML source and a minimum average subthreshold swing of 13 mV/decade is achieved for 100 nm channel length device with 1.2 V supply voltage and 0.7 Ge mole fraction, while maintaining the IOFF in fA range.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We deal with a single conservation law with discontinuous convex-concave type fluxes which arise while considering sign changing flux coefficients. The main difficulty is that a weak solution may not exist as the Rankine-Hugoniot condition at the interface may not be satisfied for certain choice of the initial data. We develop the concept of generalized entropy solutions for such equations by replacing the Rankine-Hugoniot condition by a generalized Rankine-Hugoniot condition. The uniqueness of solutions is shown by proving that the generalized entropy solutions form a contractive semi-group in L-1. Existence follows by showing that a Godunov type finite difference scheme converges to the generalized entropy solution. The scheme is based on solutions of the associated Riemann problem and is neither consistent nor conservative. The analysis developed here enables to treat the cases of fluxes having at most one extrema in the domain of definition completely. Numerical results reporting the performance of the scheme are presented. (C) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

EcoP15I is a type III restriction enzyme that requires two recognition sites in a defined orientation separated by up to 3.5 kbp to efficiently cleave DNA. The mechanism through which site- bound EcoP15I enzymes communicate between the two sites is unclear. Here, we use atomic force microscopy to study EcoP15I-DNA pre-cleavage complexes. From the number and size distribution of loops formed, we conclude that the loops observed do not result from translocation, but are instead formed by a contact between site- bound EcoP15I and a nonspecific region of DNA. This conclusion is confirmed by a theoretical polymer model. It is further shown that translocation must play some role, because when translocation is blocked by a Lac repressor protein, DNA cleavage is similarly blocked. On the basis of these results, we present a model for restriction by type III restriction enzymes and highlight the similarities between this and other classes of restriction enzymes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An analysis and design study using Shape Memory Alloy (SMA) wire integrated beam and its buckling shape control are reported. The dynamical system performance is analyzed with a mathematical set-up involving nonlocal and rate sensitive kinetics of phase transformation in the SMA wire. A standard phenomenological constitutive model reported by Brinson (1993) is modified by considering certain consistency conditions in the material property tensors and by eliminating spurious singularity. Considering the inhomogeneity effects, a finite element model of the SMA wire is developed. Simulations are carried out to study the buckling shape control of a beam integrated with SMA wire.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The wear resistance of high chromium iron is well recorded. However, the same is not the case as regards the use of manganese at higher percentages in high chromium irons and its influence on wear behaviour. Hence, this work highlights the slurry wear characteristics of chromium 16–19%) iron following the introduction of manganese at two levels i.e. 5 and 10%. It is known that the wear properties are dictated by the microstructural features. To alter the structure, the cooling rate of casting has been varied by adopting two different types of moulds (i.e. sand and metal) and subsequently subjecting to thermal treatment. The as-cast and heat treated samples are examined for microstructure and then evaluated for hardness and slurry erosion properties. As the manganese content is increased from 5 to 10%, the hardness showed a decrease in value both in the as-cast and heat treated conditions. The slurry erosion loss, expectedly, showed an increase irrespective of the sample condition (i.e. mould type/heat treatment adopted). The findings are corroborated with the microstructural features obtained through optical and scanning electron microscopy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: One-third of patients with type 1 diabetes develop diabetic complications, such as diabetic nephropathy. The diabetic complications are related to a high mortality from cardiovascular disease, impose a great burden on the health care system, and reduce the health-related quality of life of patients. Aims: This thesis assessed, whether parental risk factors identify subjects at a greater risk of developing diabetic complications. Another aim was to evaluate the impact of a parental history of type 2 diabetes on patients with type 1 diabetes. A third aim was to assess the role of the metabolic syndrome in patients with type 1 diabetes, both its presence and its predictive value with respect to complications. Subjects and methods: This study is part of the ongoing nationwide Finnish Diabetic Nephropathy (FinnDiane) Study. The study was initiated in 1997, and, thus far, 4,800 adult patients with type 1 diabetes have been recruited. Since 2004, follow-up data have also been collected in parallel to the recruitment of new patients. Studies I to III have a cross-sectional design, whereas Study IV has a prospective design. Information on parents was obtained from the patients with type 1 diabetes by a questionnaire. Results: Clustering of parental hypertension, cardiovascular disease, and diabetes (type 1 and type 2) was associated with diabetic nephropathy in patients with type 1 diabetes, as was paternal mortality. A parental history of type 2 diabetes was associated with a later onset of type 1 diabetes, a higher prevalence of the metabolic syndrome, and a metabolic profile related to insulin resistance, despite no difference in the distribution of human leukocyte antigen genotypes or the presence of diabetic complications. A maternal history of type 2 diabetes, seemed to contribute to a worse metabolic profile in the patients with type 1 diabetes than a paternal history. The metabolic syndrome was a frequent finding in patients with type 1 diabetes, observed in 38% of males and 40% of females. The prevalence increased with worsening of the glycemic control and more severe renal disease. The metabolic syndrome was associated with a 3.75-fold odds ratio for diabetic nephropathy, and all of the components of the syndrome were independently associated with diabetic nephropathy. The metabolic syndrome, independent of diabetic nephropathy, increased the risk of cardiovascular events and cardiovascular and diabetes-related mortality over a 5.5-year follow-up. With respect to progression of diabetic nephropathy, the role of the metabolic syndrome was less clear, playing a strong role only in the progression from macroalbuminuria to end-stage renal disease. Conclusions: Familial factors and the metabolic syndrome play an important role in patients with type 1 diabetes. Assessment of these factors is an easily applicable tool in clinical practice to identify patients at a greater risk of developing diabetic complications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background and aims. Diabetic dyslipidemia is a highly atherogenic triad of increased triglycerides, decreased HDL cholesterol, and small dense LDL. Fibrates have a beneficial effect on diabetic dyslipidemia, and they have reduced cardiovascular events in randomized trials. Fenofibrate has reduced albuminuria and markers of low-grade inflammation and endothelial dysfunction. The present studies were undertaken to characterize the alterations of VLDL and LDL subclasses and to investigate the binding of LDL to arterial wall in type 2 diabetes. Further purpose was to elucidate the effects of fenofibrate on several lipoprotein subclasses, augmentation index (AIx), carotid intima-media thickness (IMT), and renal function. Subjects. 239 type 2 diabetic subjects were recruited among participants of the FIELD (Fenofibrate Intervention and Event Lowering in Diabetes) study at the Helsinki centre. The patients were randomized to fenofibrate (200mg/d) or placebo for 5 years. Additionally, a healthy control group (N = 93) was recruited. Results. VLDL1 triglycerides increased in similar proportion to total triglycerides in type 2 diabetic patients and control subjects. Despite the increase in total apoCIII levels, VLDL apoCIII was decreased in diabetic patients. Enrichment of LDL with apoCIII induced a small increase in binding of LDL to arterial wall proteoglycan. Intrinsic characteristics of diabetic LDL, rather than levels of apoCIII, were responsible for increased proteoglycan binding of diabetic LDL with high apoCIII. Fenofibrate reduced triglycerides, increased LDL size, and shifted HDL subclasses towards smaller particles with no change in levels of HDL cholesterol. High levels of homocysteine were associated with lower increase of HDL cholesterol and apoA-I during fenofibrate treatment. Long-term fenofibrate treatment did not improve IMT, AIx, inflammation, or endothelial function. Fenofibrate decreased creatinine clearance and estimated glomerular filtration rate. No effect on albuminuria was seen with fenofibrate. Instead, Cystatin C was increased during fenofibrate treatment. Conclusions. 1) Elevation of VLDL 1 triglycerides was the major determinant of plasma triglyceride concentration in control subjects and type 2 diabetic patients. 2) LDL with high apoCIII showed multiple atherogenic properties, that were only partially mediated by apoCIII per se in type 2 diabetes 3) Fenofibrate demonstrated no effect on surrogate markers of atherosclerosis. 4) Fenofibrate had no effect on albuminuria and the observed decrease in markers of renal function could complicate the clinical surveillance of the patients. 5) Fenofibrate can be used to treat severe hypertriglyceridemia or in combination therapy with statins, but not to increase HDL levels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The metabolic syndrome and type 1 diabetes are associated with brain alterations such as cognitive decline brain infarctions, atrophy, and white matter lesions. Despite the importance of these alterations, their pathomechanism is still poorly understood. This study was conducted to investigate brain glucose and metabolites in healthy individuals with an increased cardiovascular risk and in patients with type 1 diabetes in order to discover more information on the nature of the known brain alterations. We studied 43 20- to 45-year-old men. Study I compared two groups of non-diabetic men, one with an accumulation of cardiovascular risk factors and another without. Studies II to IV compared men with type 1 diabetes (duration of diabetes 6.7 ± 5.2 years, no microvascular complications) with non-diabetic men. Brain glucose, N-acetylaspartate (NAA), total creatine (tCr), choline, and myo-inositol (mI) were quantified with proton magnetic resonance spectroscopy in three cerebral regions: frontal cortex, frontal white matter, thalamus, and in cerebellar white matter. Data collection was performed for all participants during fasting glycemia and in a subgroup (Studies III and IV), also during a hyperglycemic clamp that increased plasma glucose concentration by 12 mmol/l. In non-diabetic men, the brain glucose concentration correlated linearly with plasma glucose concentration. The cardiovascular risk group (Study I) had a 13% higher plasma glucose concentration than the control group, but no difference in thalamic glucose content. The risk group thus had lower thalamic glucose content than expected. They also had 17% increased tCr (marker of oxidative metabolism). In the control group, tCr correlated with thalamic glucose content, but in the risk group, tCr correlated instead with fasting plasma glucose and 2-h plasma glucose concentration in the oral glucose tolerance test. Risk factors of the metabolic syndrome, most importantly insulin resistance, may thus influence brain metabolism. During fasting glycemia (Study II), regional variation in the cerebral glucose levels appeared in the non-diabetic subjects but not in those with diabetes. In diabetic patients, excess glucose had accumulated predominantly in the white matter where the metabolite alterations were also the most pronounced. Compared to the controls values, the white matter NAA (marker of neuronal metabolism) was 6% lower and mI (glia cell marker) 20% higher. Hyperglycemia is therefore a potent risk factor for diabetic brain disease and the metabolic brain alterations may appear even before any peripheral microvascular complications are detectable. During acute hyperglycemia (Study III), the increase in cerebral glucose content in the patients with type 1 diabetes was, dependent on brain region, between 1.1 and 2.0 mmol/l. An every-day hyperglycemic episode in a diabetic patient may therefore as much as double brain glucose concentration. While chronic hyperglycemia had led to accumulation of glucose in the white matter, acute hyperglycemia burdened predominantly the gray matter. Acute hyperglycemia also revealed that chronic fluctuation in blood glucose may be associated with alterations in glucose uptake or in metabolism in the thalamus. The cerebellar white matter appeared very differently from the cerebral (Study IV). In the non-diabetic men it contained twice as much glucose as the cerebrum. Diabetes had altered neither its glucose content nor the brain metabolites. The cerebellum seems therefore more resistant to the effects of hyperglycemia than is the cerebrum.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: The gene encoding for uncoupling protein-1 (UCP1) is considered to be a candidate gene for type 2 diabetes because of its role in thermogenesis and energy expenditure. The objective of the study was to examine whether genetic variations in the UCP1 gene are associated with type 2 diabetes and its related traits in Asian Indians. Methods: The study subjects, 810 type 2 diabetic subjects and 990 normal glucose tolerant (NGT) subjects, were chosen from the Chennai Urban Rural Epidemiological Study (CURES), an ongoing population-based study in southern India. The polymorphisms were genotyped using the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. Linkage disequilibrium (LD) was estimated from the estimates of haplotypic frequencies. Results: The three polymorphisms, namely -3826A -> G, an A -> C transition in the 5'-untranslated region (UTR) and Met229Leu, were not associated with type 2 diabetes. However, the frequency of the A-C-Met (-3826A -> G-5'UTR A -> C-Met229Leu) haplotype was significantly higher among the type 2 diabetic subjects (2.67%) compared with the NGT subjects (1.45%, P < 0.01). The odds ratio for type 2 diabetes for the individuals carrying the haplotype A-C-Met was 1.82 (95% confidence interval, 1.29-2.78, P = 0.009). Conclusions: The haplotype, A-C-Met, in the UCP1 gene is significantly associated with the increased genetic risk for developing type 2 diabetes in Asian Indians.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The prevalence of obesity is increasing at an alarming rate in all age groups worldwide. Obesity is a serious health problem due to increased risk of morbidity and mortality. Although environmental factors play a major role in the development of obesity, the identification of rare monogenic defects in human genes have confirmed that obesity has a strong genetic component. Mutations have been identified in genes encoding proteins of the leptin-melanocortin signaling system, which has an important role in the regulation of appetite and energy balance. The present study aimed at identifying mutations and genetic variations in the melanocortin receptors 2-5 and other genes active on the same signaling pathway accounting for severe early-onset obesity in children and morbid obesity in adults. The main achievement of this thesis was the identification of melanocortin-4 receptor (MC4R) mutations in Finnish patients. Six pathogenic MC4R mutations (308delT, P299H, two S127L and two -439delGC mutations) were identified, corresponding to a prevalence of 3% in severe early-onset obesity. No obesity causing MC4R mutations were found among patients with adult-onset morbid obesity. The MC4R 308delT deletion is predicted to result in a grossly truncated nonfunctional receptor of only 107 amino acids. The C-terminal residues, which are important in MC4R cell surface targeting, are totally absent from the mutant 308delT receptor. In vitro functional studies supported a pathogenic role for the S127L mutation since agonist induced signaling of the receptor was impaired. Cell membrane localization of the S127L receptor did not differ from that of the wild-type receptor, confirming that impaired function of the S127L receptor was due to reduced signaling properties. The P299H mutation leads to intracellular retention of the receptor. The -439delGC deletion is situated at a potential nescient helix-loop-helix 2 (NHLH2) -binding site in the MC4R promoter. It was demonstrated that the transcription factor NHLH2 binds to the consensus sequence at the -439delGC site in vitro, possibly resulting in altered promoter activity. Several genetic variants were identified in the melanocortin-3 receptor (MC3R) and pro-opiomelanocortin (POMC) genes. These polymorphisms do not explain morbid obesity, but the results indicate that some of these genetic variations may be modifying factors in obesity, resulting in subtle changes in obesity-related traits. A risk haplotype for obesity was identified in the ectonucleotide pyrophosphatase phosphodiesterase 1 (ENPP1) gene through a candidate gene single nucleotide polymorphism (SNP) genotyping approach. An ENPP1 haplotype, composed of SNPs rs1800949 and rs943003, was shown to be significantly associated with morbid obesity in adults. Accordingly, the MC3R, POMC and ENPP1 genes represent examples of susceptibility genes in which genetic variants predispose to obesity. In conclusion, pathogenic mutations in the MC4R gene were shown to account for 3% of cases with severe early-onset obesity in Finland. This is in line with results from other populations demonstrating that mutations in the MC4R gene underlie 1-6% of morbid obesity worldwide. MC4R deficiency thus represents the most common monogenic defect causing human obesity reported so far. The severity of the MC4-receptor defect appears to be associated with time of onset and the degree of obesity. Classification of MC4R mutations may provide a useful tool when predicting the outcome of the disease. In addition, several other genetic variants conferring susceptibility to obesity were detected in the MC3R, MC4R, POMC and ENPP1 genes.