980 resultados para 240204 Condensed Matter Physics - Other
Resumo:
The synthesis and structural characterization of a europium complexed fluorene-bipyridine copolymer are described. A level of ion insertion of 80% in molar basis was achieved, and theoretical calculations showed that it required a twist of 179 degrees (49 kJ) between the pyridine units. Spectroscopy data showed that no electronic coupling between the main backbone and the complexation sites had occurred, but these hindered the interchain aggregation observed in the non complexed polymer. Preliminary electroluminescence studies showed that the EL and PL spectra are consistent, and that the ion had a trapping effect in the charge transport. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The electronic stopping cross section (SCS) of Al2O3 for proton beams is studied both experimentally and theoretically. The measurements are made for proton energies from 40 keV up to 1 MeV, which cover the maximum stopping region, using two experimental methods, the transmission technique at low energies (similar to 40-175 keV) and the Rutherford backscattering at high energies (approximate to 190-1000 keV). These new data reveal an increment of 16% in the SCS around the maximum stopping with respect to older measurements. The theoretical study includes electronic stopping power calculations based on the dielectric formalism and on the transport cross section (TCS) model to describe the electron excitations of Al2O3. The non-linear TCS calculations of the SCS for valence electrons together with the generalized oscillator strengths (GOS) model for the core electrons compare well with the experimental data in the whole range of energies considered.
Resumo:
Spin coherence generation in an ensemble of negatively charged (In,Ga)As/GaAs quantum dots was investigated by picosecond time-resolved pump-probe spectroscopy measuring ellipticity. Robust coherence of the ground-state electron spins is generated by pumping excited charged exciton (trion) states. The phase of the coherent state, as evidenced by the spin ensemble precession about an external magnetic field, varies relative to spin coherence generation resonant with the ground state. The phase variation depends on the pump photon energy. It is determined by (a) pumping dominantly either singlet or triplet excited states, leading to a phase inversion, and (b) the subsequent carrier relaxation into the ground states. From the dependence of the precession phase and the measured g factors, information about the quantum dot shell splitting and the exchange energy splitting between triplet and singlet states can be extracted in the ensemble.
Resumo:
The infrared absorption of polysiloxanes involves a strong band at around 1050 cm(-1), attributed to the antisymmetric vibration of siloxane bridges. The splitting of this band into two components is generally attributed to coupling between next-neighbor siloxane groups along the polysiloxane chain. From a quantitative analysis of the spectra of these materials, we find that this splitting is larger when the material is in thin-film form, and that the relative intensity of the two components is polarization dependent. We show that these effects are fully understandable in the theoretical framework of infrared absorption by thin films, and are related to long-range dipolar interactions responsible for the longitudinal-transverse splitting effect in crystalline materials. As a consequence, the polarization dependence of the infrared absorption observed for thin films does not appear to be associated with an orientational ordering in the film. (c) 2012 Elsevier B.V. All rights reserved.
Resumo:
The physical properties of small rhodium clusters, Rh-n, have been in debate due to the shortcomings of density functional theory (DFT). To help in the solution of those problems, we obtained a set of putative lowest energy structures for small Rh-n (n = 2-15) clusters employing hybrid-DFT and the generalized gradient approximation (GGA). For n = 2-6, both hybrid and GGA functionals yield similar ground-state structures (compact), however, hybrid favors compact structures for n = 7-15, while GGA favors open structures based on simple cubic motifs. Thus, experimental results are crucial to indicate the correct ground-state structures, however, we found that a unique set of structures (compact or open) is unable to explain all available experimental data. For example, the GGA structures (open) yield total magnetic moments in excellent agreement with experimental data, while hybrid structures (compact) have larger magnetic moments compared with experiments due to the increased localization of the 4d states. Thus, we would conclude that GGA provides a better description of the Rh-n clusters, however, a recent experimental-theoretical study [ Harding et al., J. Chem. Phys. 133, 214304 (2010)] found that only compact structures are able to explain experimental vibrational data, while open structures cannot. Therefore, it indicates that the study of Rh-n clusters is a challenging problem and further experimental studies are required to help in the solution of this conundrum, as well as a better description of the exchange and correlation effects on the Rh n clusters using theoretical methods such as the quantum Monte Carlo method.
Resumo:
We study the effects of Ohmic, super-Ohmic, and sub-Ohmic dissipation on the zero-temperature quantum phase transition in the random transverse-field Ising chain by means of an (asymptotically exact) analytical strong-disorder renormalization-group approach. We find that Ohmic damping destabilizes the infinite-randomness critical point and the associated quantum Griffiths singularities of the dissipationless system. The quantum dynamics of large magnetic clusters freezes completely, which destroys the sharp phase transition by smearing. The effects of sub-Ohmic dissipation are similar and also lead to a smeared transition. In contrast, super-Ohmic damping is an irrelevant perturbation; the critical behavior is thus identical to that of the dissipationless system. We discuss the resulting phase diagrams, the behavior of various observables, and the implications to higher dimensions and experiments.
Resumo:
Pulse repetition rates and the number of laser pulses are among the most important parameters that do affect the analysis of solid materials by laser induced breakdown spectroscopy, and the knowledge of their effects is of fundamental importance for suggesting analytical strategies when dealing with laser ablation processes of polymers. In this contribution, the influence of these parameters in the ablated mass and in the features of craters was evaluated in polypropylene and high density polyethylene plates containing pigment-based PbCrO4. Surface characterization and craters profile were carried out by perfilometry and scanning electron microscopy. Area, volume and profile of craters were obtained using Taylor Map software. A laser induced breakdown spectroscopy system consisted of a Q-Switched Nd:YAG laser (1064 nm, 5 ns) and an Echelle spectrometer equipped with ICCD detector were used. The evaluated operating conditions consisted of 10, 25 and 50 laser pulses at 1, 5 and 10 Hz, 250 mJ/pulse (85 J cm(-2)), 2 mu s delay time and 6 mu s integration time gate. Differences in the topographical features among craters of both polymers were observed. The decrease in the repetition rate resulted in irregular craters and formation of edges, especially in polypropylene sample. The differences in the topographical features and ablated masses were attributed to the influence of the degree of crystallinity, crystalline melting temperature and glass transition temperature in the ablation process of the high density polyethylene and polypropylene. It was also observed that the intensities of chromium and lead emission signals obtained at 10 Hz were two times higher than at 5 Hz by keeping the number of laser pulses constant. (C) 2011 Elsevier B. V. All rights reserved.
Resumo:
The present work reports on the thermo-optical study of germanate thin films doped with Au and Ag nanoparticles. Transmission Electron Microscopy images, UV-visible absorption and Micro-Raman scattering evidenced the presence of nanoparticles and the formation of collective excitations, the so called surface plasmons. Moreover, the effects of the metallic nanoparticles in the thermal properties of the films were observed. The thermal lens technique was proposed to evaluate the Thermal Diffusivity (D) of the samples. It furnishes superficial spatial resolution of about 100 mu m, so it is appropriate to study inhomogeneous samples. It is shown that D may change up to a factor 3 over the surface of a film because of the differences in the nanoparticles concentration distribution. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
In this work we study the effect reduction in the density of dangling bond species D-0 states in rare-earth (RE) doped a-Si films as a function concentration for different RE-specimens. The films a-Si-1_(x) REx, RE=Y3+, Gd3+, Er3+, Lu3+) were prepared by co-sputtering and investigated by electron spin resonance (ESR) and Raman scattering experiments. According to our data the RE-doping reduces the ESR signal intensity of the D-0 states with an exponential dependence on the rare-concentration. Furthermore, the reduction produced by the magnetic rare-earths Gd3+ and Er3+ is remarkably greater than that caused by Y3+ and Lu3+, which led us to suggest an exchange-like coupling between the spin of the magnetic REs3+ and the spin of silicon neutral dangling bonds. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
5 We employ the circular-polarization-resolved magnetophotoluminescence technique to probe the spin character of electron and hole states in a GaAs/AlGaAs strongly coupled double-quantum-well system. The photoluminescence (PL) intensities of the lines associated with symmetric and antisymmetric electron states present clear out-of-phase oscillations between integer values of the filling factor. and are caused by magnetic-field-induced changes in the population of occupied Landau levels near to the Fermi level of the system. Moreover, the degree of circular polarization of these emissions also exhibits the oscillatory behavior with increasing magnetic field. Both quantum oscillations observed in the PL intensities and in the degree of polarizations may be understood in terms of a simple single-particle approach model. The k . p method was used to calculate the photoluminescence peak energies and the degree of circular polarizations in the double-quantum-well structure as a function of the magnetic field. These calculations prove that the character of valence band states plays an important role in the determination of the degree of circular polarization and, thus, resulting in a magnetic-field-induced change of the polarization sign.
Resumo:
We study the charge dynamic structure factor of the one-dimensional Hubbard model with finite on-site repulsion U at half-filling. Numerical results from the time-dependent density matrix renormalization group are analyzed by comparison with the exact spectrum of the model. The evolution of the line shape as a function of U is explained in terms of a relative transfer of spectral weight between the two-holon continuum that dominates in the limit U -> infinity and a subset of the two-holon-two-spinon continuum that reconstructs the electron-hole continuum in the limit U -> 0. Power-law singularities along boundary lines of the spectrum are described by effective impurity models that are explicitly invariant under spin and eta-spin SU(2) rotations. The Mott-Hubbard metal-insulator transition is reflected in a discontinuous change of the exponents of edge singularities at U = 0. The sharp feature observed in the spectrum for momenta near the zone boundary is attributed to a van Hove singularity that persists as a consequence of integrability.
Resumo:
Nickel oxide nonoparticles successfully synthesized by a polymer percursor method are studied in this work. The analysis of X-ray powder diffraction data provides a mean crystallite size of 22 +/- 2 nm which is in a good agreement with the mean size estimated from transmission electron microscopy images. Whereas the magnetization (M) vs. magnetic field (H) curve obtained at 5 K is consistent with a ferromagnetic component which coexists with an antiferromagnetic component, the presence of two peaks in the zero-field-cooled trace suggests the occurrence of two blocking process. The broad maximum at high temperature was associated with the thermal relaxation of uncompensated spins at the particle core and the low temperature peak was assigned to the freeze of surface spins clusters. Static and dynamic magnetic results suggest that the correlations of surface spins clusters show a spin-glass-like below T-g = 7.3 +/- 0.1 K with critical exponents zv = 9.7 +/- 0.5 and beta = 0.7 +/- 0.1, which are consistent with typical reported for spin-glass systems. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
We investigate the influence of sub-Ohmic dissipation on randomly diluted quantum Ising and rotor models. The dissipation causes the quantum dynamics of sufficiently large percolation clusters to freeze completely. As a result, the zero-temperature quantum phase transition across the lattice percolation threshold separates an unusual super-paramagnetic cluster phase from an inhomogeneous ferromagnetic phase. We determine the low-temperature thermodynamic behavior in both phases, which is dominated by large frozen and slowly fluctuating percolation clusters. We relate our results to the smeared transition scenario for disordered quantum phase transitions, and we compare the cases of sub-Ohmic, Ohmic, and super-Ohmic dissipation.
Resumo:
The metallic carbides exhibit many novel prototypes of crystalline structure. Among these compounds Th2NiC2 was reported in 1991 as a new carbide which crystallizes in the U2IrC2 prototype structure. In this work we report a reinvestigation of the synthesis of this compound. We find that Th2NiC2 is a new superconductor. Our results suggest that this phase is stable only at high temperatures in the system Th-Ni-C. The substitution of Th by Sc stabilizes the phase and improves the superconducting properties. The highest superconducting critical temperature occurs at 11.2 K with nominal composition Th1.8Sc0.2NiC2. The electronic coefficient determined by specific heat measurements is close to zero. This unusual result can be explained by covalent bonding in the compound.
Resumo:
By combining first-principles electronic structure calculations and existing time-differential gamma-gamma perturbed-angular-correlation experiments we studied the site localization, the local environment, and the electronic structure of Cd impurities in sapphire (alpha-Al2O3) single crystals in different charged states. The ab initio calculations were performed with the full-potential augmented plane wave plus local orbitals method and the projector augmented wave method. Comparing the calculated electric-field-gradient tensor at the Cd nuclei in the alpha-Al2O3 host lattice and the corresponding available experimental values, we have seen that it is equally possible for Cd to replace an Al atom (in a negative charge state) or to be placed in an interstitial site (in a neutral charge state). To finally address the issue of the Cd impurity localization, we performed formation energy calculations. These results have shown that Cd placed in the substitutional Al site, in the negatively charged state, is the most probable configuration.