932 resultados para thorium thin film


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Photoconductivity (PC) processes may be the most suitable technique for obtaining information about the states in the gap. It finds applications in photovoItaics, photo detection and radiation measurements. The main task in the area of photovoltaics, is to increase the efficiency of the device and also to develop new materials with good optoelectronic properties useful for energy conversion, keeping the idea of cost effectiveness. Photoconduction includes generation and recombination of carriers and their transport to the electrodes. So thermal relaxation process, charge carrier statistics, effects of electrodes and several mechanisms of recombination are involved in photoconductivity.A major effect of trapping is to make the experimentally observed decay time of photocurrent, longer than carrier lifetime. If no trapping centers are present, then observed photocurrent will decay in the same way as the density of free carriers and the observed decay time will be equal to carrier lifetime. If the density of free carriers is much less than density of trapped carriers, the entire decay of photocurrent is effectively dominated by the rate of trap emptying rather than by the rate of recombination.In the present study, the decay time of carriers was measured using photoconductive decay (PCD) technique. For the measurements, the film was loaded in a liquid Helium cryostat and the temperature was controlled using Lakshore Auto tuning temperature controller (Model 321). White light was used to illuminate the required area of the sample. Heat radiation from the light source was avoided by passing the light beam through a water filter. The decay current. after switching off the illumination. was measured using a Kiethely 2000 multi meter. Sets of PCD measurements were taken varying sample temperature, sample preparation temperature, thickness of the film, partial pressure of Oxygen and concentration of a particular element in a compound. Decay times were calculated using the rate window technique, which is a decay sampling technique particularly suited to computerized analysis. For PCD curves with two well-defined regions, two windows were chosen, one at the fast decay region and the other at the slow decay region. The curves in a particular window were exponentially fitted using Microsoft Excel 2000 programme. These decay times were plotted against sample temperature and sample preparation temperature to study the effect of various defects in the film. These studies were done in order to optimize conditions of preparation technique so as to get good photosensitive samples. useful for photovoltaic applications.Materials selected for the study were CdS, In2Se3, CuIn2Se3 and CuInS2• Photoconductivity studies done on these samples are organised in six chapters including introduction and conclusion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Non-destructive testing (NDT) is the use of non-invasive techniques to determine the integrity of a material, component, or structure. Engineers and scientists use NDT in a variety of applications, including medical imaging, materials analysis, and process control.Photothermal beam deflection technique is one of the most promising NDT technologies. Tremendous R&D effort has been made for improving the efficiency and simplicity of this technique. It is a popular technique because it can probe surfaces irrespective of the size of the sample and its surroundings. This technique has been used to characterize several semiconductor materials, because of its non-destructive and non-contact evaluation strategy. Its application further extends to analysis of wide variety of materials. Instrumentation of a NDT technique is very crucial for any material analysis. Chapter two explores the various excitation sources, source modulation techniques, detection and signal processing schemes currently practised. The features of the experimental arrangement including the steps for alignment, automation, data acquisition and data analysis are explained giving due importance to details.Theoretical studies form the backbone of photothermal techniques. The outcome of a theoretical work is the foundation of an application.The reliability of the theoretical model developed and used is proven from the studies done on crystalline.The technique is applied for analysis of transport properties such as thermal diffusivity, mobility, surface recombination velocity and minority carrier life time of the material and thermal imaging of solar cell absorber layer materials like CuInS2, CuInSe2 and SnS thin films.analysis of In2S3 thin films, which are used as buffer layer material in solar cells. The various influences of film composition, chlorine and silver incorporation in this material is brought out from the measurement of transport properties and analysis of sub band gap levels.The application of photothermal deflection technique for characterization of solar cells is a relatively new area that requires considerable attention.The application of photothermal deflection technique for characterization of solar cells is a relatively new area that requires considerable attention. Chapter six thus elucidates the theoretical aspects of application of photothermal techniques for solar cell analysis. The experimental design and method for determination of solar cell efficiency, optimum load resistance and series resistance with results from the analysis of CuInS2/In2S3 based solar cell forms the skeleton of this chapter.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Laser produced plasma from silver is generated using a Q-switched Nd:YAG laser. Optical emission spectroscopy is used to carry out time of flight (TOF) analysis of atomic particles. An anomalous double peak profile in the TOF distribution is observed at low pressure. A collection of slower species emerge at reduced pressure below 4 X lO-3 mbar and this species has a greater velocity spread. At high pressure the plasma expansion follows the shockwave model with cylindrical symmetry whereas at reduced pressure it shows unsteady adiabatic expansion (UAE). During UAE the species show a parabolic increases in the expansion time with radial distance whereas during shock wave expansion the exponent is less than one. The angular distribution of the ablated species in the plume is obtained from the measurement of optical density of thin films deposited on to glass substrates kept perpendicular to the plume. There is a sharp variation in the film thickness away from the film centre due to asymmetries in the plume.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Large amplitude local density fluctuations in a thin superfluid He film is considered. It is shown that these large amplitude fluctuations travel and behave like "quasi-solitons" under collision, even when the full nonlinearity arising from the Van der Waals potential is taken into account.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present work, we report the third order nonlinear optical properties of ZnO thin films deposited using self assembly, sol gel process as well as pulsed laser ablation by z scan technique. ZnO thin films clearly exhibit a negative nonlinear index of refraction at 532 nm and the observed nonlinear refraction is attributed to two photon absorption followed by free carrier absorption. Although the absolute nonlinear values for these films are comparable, there is a change in the sign of the absorptive nonlinearity of the films. The films developed by dip coating and pulsed laser ablation exhibit reverse saturable absorption whereas the self assembled film exhibits saturable absorption. These different nonlinear characteristics in the self assembled films can be mainly attributed to the saturation of linear absorption of the ZnO defect states.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Màster en Nanociència i Nanotecnologia curs 2006-2007. Directors: Francesca Peiró i Martínez and Jordi Arbiol i Cobos

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Amorphous thin films of Fe/Sm, prepared by evaporation methods, have been magnetically characterized and the results were interpreted in terms of the random magnets theory. The samples behave as 2D and 3D random magnets depending on the total thickness of the film. From our data the existence of orientational order, which greatly influences the magnetic behavior of the films, is also clear.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Due to the great versatility of the properties of polymer thin films, special interest has been taken in recent years on their preparation and electrical properties. The present thesis is entirely devoted to the study of the formation, structure and electrical properties of plasma» polymerised polyacrylonitrile (PAN) thin films. Eventhough the studies are confined to a single polymer film, the results in general are applicable to similar polar polymer films.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Swift heavy ion induced changes in microstructure and surface morphology of vapor deposited Fe–Ni based metallic glass thin films have been investigated by using atomic force microscopy, X-ray diffraction and transmission electron microscopy. Ion beam irradiation was carried out at room temperature with 103 MeV Au9+ beam with fluences ranging from 3 1011 to 3 1013 ions/cm2. The atomic force microscopy images were subjected to power spectral density analysis and roughness analysis using an image analysis software. Clusters were found in the image of as-deposited samples, which indicates that the film growth is dominated by the island growth mode. As-deposited films were amorphous as evidenced from X-ray diffraction; however, high resolution transmission electron microscopy measurements revealed a short range atomic order in the samples with crystallites of size around 3 nm embedded in an amorphous matrix. X-ray diffraction pattern of the as-deposited films after irradiation does not show any appreciable changes, indicating that the passage of swift heavy ions stabilizes the short range atomic ordering, or even creates further amorphization. The crystallinity of the as-deposited Fe–Ni based films was improved by thermal annealing, and diffraction results indicated that ion beam irradiation on annealed samples results in grain fragmentation. On bombarding annealed films, the surface roughness of the films decreased initially, then, at higher fluences it increased. The observed change in surface morphology of the irradiated films is attributed to the interplay between ion induced sputtering, volume diffusion and surface diffusion

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Effect of varying spray rate on the structure and optoelectronic properties of spray pyrolysed ZnO film is analysed. ZnO films were characterised using different techniques such as X-ray diffraction (XRD), photoluminescence, electrical resistivity measurement, and optical absorption. The XRD analysis proved that, with the increase in spray rate, orientation of the grains changed from (1 0 1) plane to (0 0 2) plane. The films exhibited luminescence in two regions—one was the ‘near band-edge’ (NBE) (∼380 nm) emission and the other one was the ‘blue-green emission’ (∼503 nm). Intensity of the blue-green emission decreased after orientation of grains shifted to (0 0 2) plane. Scanning electron microscope (SEM) analysis of the films asserts that spray rate has major role in improving the crystallographic properties of the films. Moreover resistivity of the films could be lowered to 2.4×10−2 cm without any doping or post-deposition annealing

Relevância:

30.00% 30.00%

Publicador:

Resumo:

LiCoO₂thin films have been grown by pulsed laser deposition on stainless steel and SiO₂/Si substrates. The film deposited at 600°C in an oxygen partial pressure of 100mTorr shows an excellent crystallinity, stoichiometry and no impurity phase present. Microstructure and surface morphology of thin films were examined using a scanning electron microscope. The electrochemical properties of the thin films were studied with cyclic voltammetry and galvanostatic charge-discharge techniques in the potential range 3.0-4.2 V. The initial discharge capacity of the LiCoO2 thin films deposited on the stainless steel and SiO₂/Si substrates reached 23 and 27 µAh/cm², respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ordering of block copolymers in thin films is reviewed, starting, from the fundamental principles and extending to recent promising developments as templates for nanolithography which may find important applications in the semiconductor industry. Ordering in supported thin films of symmetric and asymmetric AB diblock and ABA triblock copolymers is discussed, along with that of more complex materials such as ABC triblocks and liquid crystalline block copolymers Techniques to prepare thin films, and to characterise ordering within them, are summarized. Several methods to align Hock copolymer nanostructures, important in several applications are outlined A number of potential applications in nanolithography, production of porous materials, templating. and patterning of organic and inorganic materials are then presented. The influence of crystallization on the morphology of a block copolymer film is briefly discussed, as are structures in grafted block copolymer films. (C) 2009 Elsevier Ltd All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ellipsometry and atomic force microscopy (AFM) were used to study the film thickness and the surface roughness of both 'soft' and solid thin films. 'Soft' polymer thin films of polystyrene and poly(styrene-ethylene/butylene-styrene) block copolymer were prepared by spin-coating onto planar silicon wafers. Ellipsometric parameters were fitted by the Cauchy approach using a two-layer model with planar boundaries between the layers. The smooth surfaces of the prepared polymer films were confirmed by AFM. There is good agreement between AFM and ellipsometry in the 80-130 nm thickness range. Semiconductor surfaces (Si) obtained by anisotropic chemical etching were investigated as an example of a randomly rough surface. To define roughness parameters by ellipsometry, the top rough layers were treated as thin films according to the Bruggeman effective medium approximation (BEMA). Surface roughness values measured by AFM and ellipsometry show the same tendency of increasing roughness with increased etching time, although AFM results depend on the used window size. The combined use of both methods appears to offer the most comprehensive route to quantitative surface roughness characterisation of solid films. Copyright (c) 2007 John Wiley & Sons, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Self-consistent field theory (SCFT) is used to study the step edges that occur in thin films of lamellar-forming diblock copolymer, when the surfaces each have an affinity for one of the polymer components. We examine film morphologies consisting of a stack of ν continuous monolayers and one semi-infinite bilayer, the edge of which creates the step. The line tension of each step morphology is evaluated and phase diagrams are constructed showing the conditions under which the various morphologies are stable. The predicted behavior is then compared to experiment. Interestingly, our atomic force microscopy (AFM) images of terraced films reveal a distinct change in the character of the steps with increasing ν, which is qualitatively consistent with our SCFT phase diagrams. Direct quantitative comparisons are not possible because the SCFT is not yet able to probe the large polymer/air surface tensions characteristic of experiment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nanostrucured europium oxide and hydroxide films were obtained by pulsed Nd:YAG (532 nm) laser ablation of a europium metallic target, in the presence of a 1 mbar helium buffer atmosphere. Both the produced film and the ambient plasma were characterized. The plasma was monitored by an electrostatic probe, for plume expansion in vacuum or in the presence of the buffer atmosphere. The time evolution of the ion saturation current was obtained for several probe to substrate distances. The results show the splitting of the plume into two velocity groups, being the lower velocity profile associated with metal cluster formation within the plume. The films were obtained in the presence of helium atmosphere, for several target-to-substrate distances. They were analyzed by Rutherford backscattering spectrometry, x-ray diffraction, and atomic force microscopy, for as-deposited and 600 degrees C treated-in-air samples. The results show that the as-deposited samples are amorphous and have chemical composition compatible with europium hydroxide. The thermally treated samples show x-ray diffraction peaks of Eu(2)O(3), with chemical composition showing excess oxygen. Film nanostructuring was shown to be strongly correlated with cluster formation, as shown by velocity splitting in probe current versus time plots. (C) 2010 American Vacuum Society. [DOI: 10.1116/1.3457784]