970 resultados para proto-Basque


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Insulin-like growth factor binding protein (IGFBP)-3 modulates vascular development by regulating endothelial progenitor cell (EPC) behavior, specifically stimulating EPC cell migration. This study was undertaken to investigate the mechanism of IGFBP-3 effects on EPC function and how IGFBP-3 mediates cytoprotection following vascular injury.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

AIMS/HYPOTHESIS: Premature death of retinal pericytes is a pathophysiological hallmark of diabetic retinopathy. Among the mechanisms proposed for pericyte death is exposure to AGE, which accumulate during diabetes. The current study used an in vitro model, whereby retinal pericytes were exposed to AGE-modified substrate and the mechanisms underlying pericyte death explored. METHODS: Pericytes were isolated from bovine retinal capillaries and propagated on AGE-modified basement membrane (BM) extract or non-modified native BM. The extent of AGE modification was analysed. Proliferative responses of retinal pericytes propagated on AGE-modified BM were investigated using a 5-bromo-2-deoxy-uridine-based assay. The effect of extrinsically added platelet-derived growth factor (PDGF) isoforms on these proliferative responses was also analysed alongside mRNA expression of the PDGF receptors. Apoptotic death of retinal pericytes grown on AGE-modified BM was investigated using terminal deoxynucleotidyl transferase-mediated dUTP nick end-labelling labelling, mitochondrial membrane depolarisation and by morphological assessment. We also measured both the ability of PDGF to reverse Akt dephosphorylation that was mediated by AGE-modified BM, and increased pericyte apoptosis. RESULTS: Retinal pericytes exposed to AGE-modified BM showed reduced proliferative responses in comparison to controls (p

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Several lines of evidence indicate that the adapter molecule p130CAS (crk-associated substrate (CAS)) is required for src-mediated cellular transformation. CAS has been shown to be heavily tyrosine-phosphorylated in src-transformed cells, and genetic variants of src that are deficient in CAS binding are also unable to mediate cellular transformation. In this report, we investigated whether CAS phosphorylation and/or its association with src are required elements of the transformation process. Expression of the carboxy-terminal src binding domain of CAS in Rat 1 fibroblasts expressing a temperature-sensitive allele of v-src inhibited the formation of src-CAS complexes and also inhibited tyrosine phosphorylation of CAS. However, expression of this protein had no effect on morphological transformation, src-mediated actin rearrangements, or anchorage-independent growth of these cells when grown at the src-permissive temperature. Thus, the ability of activated src to mediate cellular transformation is either largely independent of endogenous CAS phosphorylation and/or its association with CAS or, alternatively, the carboxy-terminus of CAS may substitute for endogenous CAS in the process of src-mediated transformation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Adaptor proteins play an important role in signal transduction by regulating the establishment and maintenance of functionally important protein complexes. A recently described member of this group of proteins is p130cas (CAS), which contains numerous sequence motifs predicted to be involved in mediating protein-protein interactions. We propose that adaptor molecules like CAS may help determine the response of a cell to a particular signal by interacting with specific subsets of cellular proteins. To test this hypothesis, we have identified potential binding partners of CAS that may play a rote in cellular transformation by the oncoproteins v-SRC and/or v-CRK. We show that individual domains of CAS associate with specific subsets of proteins in vitro, and that many of these interactions are dependent on the state of tyrosine-phosphorylation of CAS. Sequences necessary for interacting with the focal adhesion kinase pp125FAK (FAK), v-SRC and v-CRK have been mapped to distinct regions of CAS. In addition, the identification of a number of putative CAS-binding partners that are present in crk-transformed cell extracts but undetectable in normal and src-transformed cell extracts supports a model in which unique protein complexes are formed in response to different signals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Processing of the 'CaaX' motif found on the C-termini of many proteins, including the proto-oncogene Ras, requires the ER (endoplasmic reticulum)-resident protease RCE1 (Ras-converting enzyme 1) and is necessary for the proper localization and function of many of these 'CaaX' proteins. In the present paper, we report that several mammalian species have a novel isoform (isoform 2) of RCE1 resulting from an alternate splice site and producing an N-terminally truncated protein. We demonstrate that both RCE1 isoform 1 and the newly identified isoform 2 are required to reinstate proper H-Ras processing and thus plasma membrane localization in RCE1-null cells. In addition, we show that the deubiquitinating enzyme USP17 (ubiquitin-specific protease 17), previously shown to modulate RCE1 activity, can regulate the abundance and localization of isoform 2. Furthermore, we show that isoform 2 is ubiquitinated on Lys43 and deubiquitinated by USP17. Collectively, the findings of the present study indicate that RCE1 isoform 2 is required for proper 'CaaX' processing and that USP17 can regulate this via its modulation of RCE1 isoform 2 ubiquitination.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Perifosine is an orally active alkylphospholipid analog, which has shown anti-tumor activity in a variety of cancers by inhibition of AKT phosphorylation. The objective of the current study was to evaluate its efficacy in in vitro models of human endometrial cancer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Analysis of colorectal carcinoma (CRC) tissue for KRAS codon 12 or 13 mutations to guide use of anti-epidermal growth factor receptor (EGFR) therapy is now considered mandatory in the UK. The scope of this practice has been recently extended because of data indicating that NRAS mutations and additional KRAS mutations also predict for poor response to anti-EGFR therapy. The following document provides guidance on RAS (i.e., KRAS and NRAS) testing of CRC tissue in the setting of personalised medicine within the UK and particularly within the NHS. This guidance covers issues related to case selection, preanalytical aspects, analysis and interpretation of such RAS testing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Methylation-induced silencing of promoter CpG islands in tumor suppressor genes plays an important role in human carcinogenesis. In colorectal cancer, the CpG island methylator phenotype (CIMP) is defined as widespread and elevated levels of DNA methylation and CIMP+ tumors have distinctive clinicopathological and molecular features. In contrast, the existence of a comparable CIMP subtype in gastric cancer (GC) has not been clearly established. To further investigate this issue, in the present study we performed comprehensive DNA methylation profiling of a well-characterised series of primary GC.

METHODS: The methylation status of 1,421 autosomal CpG sites located within 768 cancer-related genes was investigated using the Illumina GoldenGate Methylation Panel I assay on DNA extracted from 60 gastric tumors and matched tumor-adjacent gastric tissue pairs. Methylation data was analysed using a recursively partitioned mixture model and investigated for associations with clinicopathological and molecular features including age, Helicobacter pylori status, tumor site, patient survival, microsatellite instability and BRAF and KRAS mutations.

RESULTS: A total of 147 genes were differentially methylated between tumor and matched tumor-adjacent gastric tissue, with HOXA5 and hedgehog signalling being the top-ranked gene and signalling pathway, respectively. Unsupervised clustering of methylation data revealed the existence of 6 subgroups under two main clusters, referred to as L (low methylation; 28% of cases) and H (high methylation; 72%). Female patients were over-represented in the H tumor group compared to L group (36% vs 6%; P = 0.024), however no other significant differences in clinicopathological or molecular features were apparent. CpG sites that were hypermethylated in group H were more frequently located in CpG islands and marked for polycomb occupancy.

CONCLUSIONS: High-throughput methylation analysis implicates genes involved in embryonic development and hedgehog signaling in gastric tumorigenesis. GC is comprised of two major methylation subtypes, with the highly methylated group showing some features consistent with a CpG island methylator phenotype.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Interindividual epigenetic variation that occurs systemically must be established prior to gastrulation in the very early embryo and, because it is systemic, can be assessed in easily biopsiable tissues. We employ two independent genome-wide approaches to search for such variants.

Results: First, we screen for metastable epialleles by performing genomewide bisulfite sequencing in peripheral blood lymphocyte (PBL) and hair follicle DNA from two Caucasian adults. Second, we conduct a genomewide screen for genomic regions at which PBL DNA methylation is affected by season of conception in rural Gambia. Remarkably, both approaches identify the genomically imprinted VTRNA2-1 as a top environmentally responsive epiallele. We demonstrate systemic and stochastic interindividual variation in DNA methylation at the VTRNA2-1 differentially methylated region in healthy Caucasian and Asian adults and show, in rural Gambians, that periconceptional environment affects offspring VTRNA2-1 epigenotype, which is stable over at least 10 years. This unbiased screen also identifies over 100 additional candidate metastable epialleles, and shows that these are associated with cis genomic features including transposable elements.

Conclusions: The non-coding VTRNA2-1 transcript (also called nc886) is a putative tumor suppressor and modulator of innate immunity. Thus, these data indicating environmentally induced loss of imprinting at VTRNA2-1 constitute a plausible causal pathway linking early embryonic environment, epigenetic alteration, and human disease. More broadly, the list of candidate metastable epialleles provides a resource for future studies of epigenetic variation and human disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Critical functions of the immune system are maintained by the ability of myeloid progenitors to differentiate and mature into macrophages. We hypothesized that the cytoprotective gas molecule carbon monoxide (CO), generated endogenously by heme oxygenases (HO), promotes differentiation of progenitors into functional macrophages. Deletion of HO-1, specifically in the myeloid lineage (Lyz-Cre:Hmox1(flfl)), attenuated the ability of myeloid progenitors to differentiate toward macrophages and decreased the expression of macrophage markers, CD14 and macrophage colony-stimulating factor receptor (MCSFR). We showed that HO-1 and CO induced CD14 expression and efficiently increased expansion and differentiation of myeloid cells into macrophages. Further, CO sensitized myeloid cells to treatment with MCSF at low doses by increasing MCSFR expression, mediated partially through a PI3K-Akt-dependent mechanism. Exposure of mice to CO in a model of marginal bone marrow transplantation significantly improved donor myeloid cell engraftment efficiency, expansion and differentiation, which corresponded to increased serum levels of GM-CSF, IL-1α and MCP-1. Collectively, we conclude that HO-1 and CO in part are critical for myeloid cell differentiation. CO may prove to be a novel therapeutic agent to improve functional recovery of bone marrow cells in patients undergoing irradiation, chemotherapy and/or bone marrow transplantation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

CONTEXT: The formation of primordial follicles occurs during fetal life yet is critical to the determination of adult female fertility. Prior to this stage, germ cells proliferate, enter meiosis, and associate with somatic cells. Growth and survival factors implicated in these processes include activin A (INHBA), the neurotrophins BDNF and NT4 (NTF5), and MCL1. The prostaglandins have pleiotrophic roles in reproduction, notably in ovulation and implantation, but there are no data regarding roles for prostaglandins in human fetal ovarian development.

OBJECTIVE: The aim of the study was to investigate a possible role for prostaglandin (PG) E(2) in human fetal ovary development.

DESIGN: In vitro analysis of ovarian development between 8 and 20 wk gestation was performed.

MAIN OUTCOME MEASURE(S): The expression patterns of PG synthesis enzymes and the PGE(2) receptors EP2 and EP4 in the ovary were assessed, and downstream effects of PGE(2) on gene expression were analyzed.

RESULTS: Ovarian germ cells express the PG synthetic enzymes COX2 and PTGES as well as the EP2 and EP4 receptors, whereas COX1 is expressed by ovarian somatic cells. Treatment in vitro with PGE(2) increased the expression of BDNF mRNA 1.7 +/- 0.16-fold (P = 0.004); INHBA mRNA, 2.1 +/- 0.51-fold (P = 0.04); and MCL1 mRNA, 1.15 +/- 0.06-fold (P = 0.04), but not that of OCT4, DAZL, VASA, NTF5, or SMAD3.

CONCLUSIONS: These data indicate novel roles for PGE(2) in the regulation of germ cell development in the human ovary and show that these effects may be mediated by the regulation of factors including BDNF, activin A, and MCL1.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Five to ten percent of individuals with melanoma have another affected family member, suggesting familial predisposition. Germ-line mutations in the cyclin-dependent kinase (CDK) inhibitor p16 have been reported in a subset of melanoma pedigrees, but their prevalence is unknown in more common cases of familial melanoma that do not involve large families with multiple affected members. We screened for germ-line mutations in p16 and in two other candidate melanoma genes, p19ARF and CDK4, in 33 consecutive patients treated for melanoma; these patients had at least one affected first or second degree relative (28 independent families). Five independent, definitive p16 mutations were detected (18%, 95% confidence interval: 6%, 37%), including one nonsense, one disease-associated missense, and three small deletions. No mutations were detected in CDK4. Disease-associated mutations in p19ARF, whose transcript is derived in part from an alternative codon reading frame of p16, were only detected in patients who also had mutations inactivating p16. We conclude that germ-line p16 mutations are present in a significant fraction of individuals who have melanoma and a positive family history.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Interactions between the Bcr-Abl kinase inhibitor STI-571 (imatinib mesylate) and a novel microtubule-targeting agent (MTA), pyrrolo-1,5-benzoxazepine (PBOX)-6, were investigated in STI-571-sensitive and -resistant human chronic myeloid leukemia (CML) cells. Cotreatment of PBOX-6 with STI-571 induced significantly more apoptosis in Bcr-Abl-positive CML cell lines (K562 and LAMA-84) than either drug alone (P < 0.01). Cell cycle analysis of propidium iodide-stained cells showed that STI-571 significantly reduced PBOX-6-induced G2M arrest and polyploid formation with a concomitant increase in apoptosis. Similar results were obtained in K562 CML cells using lead MTAs (paclitaxel and nocodazole) in combination with STI-571. Potentiation of PBOX-6-induced apoptosis by STI-571 was specific to Bcr-Abl-positive leukemia cells with no cytoxic effects observed on normal peripheral blood cells. The combined treatment of STI-571 and PBOX-6 was associated with the down-regulation of Bcr-Abl and repression of proteins involved in Bcr-Abl transformation, namely the antiapoptotic proteins Bcl-x(L) and Mcl-1. Importantly, PBOX-6/STI-571 combinations were also effective in STI-571-resistant cells. Together, these findings highlight the potential clinical benefits in simultaneously targeting the microtubules and the Bcr-Abl oncoprotein in STI-571-sensitive and -resistant CML cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nuclear factor kappa B (NF-kappaB) activation has been proposed as a cardinal feature of tumourigenesis, although the precise mechanism, frequency, relevance, and extent of NF-kappaB activation in lymphomas remain to be fully elucidated. In this study, expression profiling and tissue microarray studies of 209 and 323 non-Hodgkin's lymphomas (NHLs) respectively, including the most frequent sub-types of NHL, were employed to generate a hypothesis concerning the most common NF-kappaB targets in NHL. These analyses showed that NF-kappaB activation is a common phenomenon in NHL, resulting in the expression of distinct sets of NF-kappaB target genes, depending on the cell context. BCL2 and BIRC5/Survivin were identified as key NF-kappaB targets and their expression distinguished small and aggressive B-cell lymphomas, respectively. Interestingly, in the vast majority of B-cell lymphomas, the expression of these markers was mutually exclusive. A set of genes was identified whose expression correlates either with BIRC5/Survivin or with BCL2. BIRC5/Survivin expression, in contrast to BCL2, was associated with a signature of cell proliferation (overexpression of cell cycle control, DNA repair, and polymerase genes), which may contribute to the aggressive phenotype and poor prognosis of these lymphomas. Strikingly, mantle cell lymphoma and chronic lymphocytic leukaemia expressed highly elevated levels of BCL2 protein and mRNA, higher than that observed in reactive mantle zone cells or even in follicular lymphomas, where BCL2 expression is deregulated through the t(14;18) translocation. In parallel with this observation, BIRC5/Survivin expression was higher in Burkitt's lymphoma and diffuse large B-cell lymphoma than in non-tumoural germinal centre cells. In vitro studies confirmed that NF-kappaB activation contributes to the expression of both markers. In cell lines representing aggressive lymphomas, NF-kappaB inhibition resulted in a decrease in BIRC5/Survivin expression. Meanwhile, in chronic lymphocytic leukaemia (CLL)-derived lymphocytes, NF-kappaB inhibition resulted in a marked decrease in BCL2 expression.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Overexpression of the Bcl-2 proto-oncogene in tumor cells confers resistance against chemotherapeutic drugs. In this study, we describe how the novel pyrrolo-1,5-benzoxazepine compound 7-[[dimethylcarbamoyl]oxy]-6-(2-naphthyl)pyrrolo-[2,1-d] (1,5)-benzoxazepine (PBOX-6) selectively induces apoptosis in Bcl-2-overexpressing cancer cells, whereas it shows no cytotoxic effect on normal peripheral blood mononuclear cells. PBOX-6 overcomes Bcl-2-mediated resistance to apoptosis in chronic myelogenous leukemia (CML) K562 cells by the time- and dose-dependent phosphorylation and inactivation of antiapoptotic Bcl-2 family members Bcl-2 and Bcl-XL. PBOX-6 also induces Bcl-2 phosphorylation and apoptosis in wild-type T leukemia CEM cells and cells overexpressing Bcl-2. This is in contrast to chemotherapeutic agents such as etoposide, actinomycin D, and ultraviolet irradiation, whereby overexpression of Bcl-2 confers resistance against apoptosis. In addition, PBOX-6 induces Bcl-2 phosphorylation and apoptosis in wild-type Jurkat acute lymphoblastic leukemia cells and cells overexpressing Bcl-2. However, Jurkat cells containing a Bcl-2 triple mutant, whereby the principal Bcl-2 phosphorylation sites are mutated to alanine, demonstrate resistance against Bcl-2 phosphorylation and apoptosis. PBOX-6 also induces the early and transient activation of c-Jun NH2-terminal kinase (JNK) in CEM cells. Inhibition of JNK activity prevents Bcl-2 phosphorylation and apoptosis, implicating JNK in the upstream signaling pathway leading to Bcl-2 phosphorylation. Collectively, these findings identify Bcl-2 phosphorylation and inactivation as a critical step in the apoptotic pathway induced by PBOX-6 and highlight its potential as an effective antileukemic agent.