936 resultados para logic circuits


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Languages based upon binary relations offer an appealing setting for constructing programs from specifications. For example, working with relations rather than functions allows specifications to be more abstract (for example, many programs have a natural specification using the converse operator on relations), and affords a natural treatment of non-determinism in specifications. In this paper we present a novel pictorial interpretation of relational terms as simple pictures of circuits, and a soundness/completeness result that allows relational equations to be proved by pictorial reasoning.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the last years there has been a clear evolution in the world of telecommunications, which goes from new services that need higher speeds and higher bandwidth, until a role of interactions between people and machines, named by Internet of Things (IoT). So, the only technology able to follow this growth is the optical communications. Currently the solution that enables to overcome the day-by-day needs, like collaborative job, audio and video communications and share of les is based on Gigabit-capable Passive Optical Network (G-PON) with the recently successor named Next Generation Passive Optical Network Phase 2 (NG-PON2). This technology is based on the multiplexing domain wavelength and due to its characteristics and performance becomes the more advantageous technology. A major focus of optical communications are Photonic Integrated Circuits (PICs). These can include various components into a single device, which simpli es the design of the optical system, reducing space and power consumption, and improves reliability. These characteristics make this type of devices useful for several applications, that justi es the investments in the development of the technology into a very high level of performance and reliability in terms of the building blocks. With the goal to develop the optical networks of future generations, this work presents the design and implementation of a PIC, which is intended to be a universal transceiver for applications for NG-PON2. The same PIC will be able to be used as an Optical Line Terminal (OLT) or an Optical Network Unit (ONU) and in both cases as transmitter and receiver. Initially a study is made of Passive Optical Network (PON) and its standards. Therefore it is done a theoretical overview that explores the materials used in the development and production of this PIC, which foundries are available, and focusing in SMART Photonics, the components used in the development of this chip. For the conceptualization of the project di erent architectures are designed and part of the laser cavity is simulated using Aspic™. Through the analysis of advantages and disadvantages of each one, it is chosen the best to be used in the implementation. Moreover, the architecture of the transceiver is simulated block by block through the VPItransmissionMaker™ and it is demonstrated its operating principle. Finally it is presented the PIC implementation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate protocols for generating a state t-design by using a fixed separable initial state and a diagonal-unitary t-design in the computational basis, which is a t-design of an ensemble of diagonal unitary matrices with random phases as their eigenvalues. We first show that a diagonal-unitary t-design generates a O (1/2(N))-approximate state t-design, where N is the number of qubits. We then discuss a way of improving the degree of approximation by exploiting non-diagonal gates after applying a diagonal-unitary t-design. We also show that it is necessary and sufficient to use O (log(2)(t)) -qubit gates with random phases to generate a diagonal-unitary t-design by diagonal quantum circuits, and that each multi-qubit diagonal gate can be replaced by a sequence of multi-qubit controlled-phase-type gates with discrete-valued random phases. Finally, we analyze the number of gates for implementing a diagonal-unitary t-design by non-diagonal two- and one-qubit gates. Our results provide a concrete application of diagonal quantum circuits in quantum informational tasks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hybrid logic is a valuable tool for specifying relational structures, at the same time that allows defining accessibility relations between states, it provides a way to nominate and make mention to what happens at each specific state. However, due to the many sources nowadays available, we may need to deal with contradictory information. This is the reason why we came with the idea of Quasi-hybrid logic, which is a paraconsistent version of hybrid logic capable of dealing with inconsistencies in the information, written as hybrid formulas. In [5] we have already developed a semantics for this paraconsistent logic. In this paper we go a step forward, namely we study its proof-theoretical aspects. We present a complete tableau system for Quasi-hybrid logic, by combining both tableaux for Quasi-classical and Hybrid logics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Syntactic logics do not suffer from the problems of logical omniscience but are often thought to lack interesting properties relating to epistemic notions. By focusing on the case of rule-based agents, I develop a framework for modelling resource-bounded agents and show that the resulting models have a number of interesting properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

International audience

Relevância:

20.00% 20.00%

Publicador:

Resumo:

International audience

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose – The purpose of this research is to show how the self-archiving of journal papers is a major step towards providing open access to research. However, copyright transfer agreements (CTAs) that are signed by an author prior to publication often indicate whether, and in what form, self-archiving is allowed. The SHERPA/RoMEO database enables easy access to publishers' policies in this area and uses a colour-coding scheme to classify publishers according to their self-archiving status. The database is currently being redeveloped and renamed the Copyright Knowledge Bank. However, it will still assign a colour to individual publishers indicating whether pre-prints can be self-archived (yellow), post-prints can be self-archived (blue), both pre-print and post-print can be archived (green) or neither (white). The nature of CTAs means that these decisions are rarely as straightforward as they may seem, and this paper describes the thinking and considerations that were used in assigning these colours in the light of the underlying principles and definitions of open access. Approach – Detailed analysis of a large number of CTAs led to the development of controlled vocabulary of terms which was carefully analysed to determine how these terms equate to the definition and “spirit” of open access. Findings – The paper reports on how conditions outlined by publishers in their CTAs, such as how or where a paper can be self-archived, affect the assignment of a self-archiving colour to the publisher. Value – The colour assignment is widely used by authors and repository administrators in determining whether academic papers can be self-archived. This paper provides a starting-point for further discussion and development of publisher classification in the open access environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Terahertz (THz) technology has been generating a lot of interest because of the potential applications for systems working in this frequency range. However, to fully achieve this potential, effective and efficient ways of generating controlled signals in the terahertz range are required. Devices that exhibit negative differential resistance (NDR) in a region of their current-voltage (I-V ) characteristics have been used in circuits for the generation of radio frequency signals. Of all of these NDR devices, resonant tunneling diode (RTD) oscillators, with their ability to oscillate in the THz range are considered as one of the most promising solid-state sources for terahertz signal generation at room temperature. There are however limitations and challenges with these devices, from inherent low output power usually in the range of micro-watts (uW) for RTD oscillators when milli-watts (mW) are desired. At device level, parasitic oscillations caused by the biasing line inductance when the device is biased in the NDR region prevent accurate device characterisation, which in turn prevents device modelling for computer simulations. This thesis describes work on I-V characterisation of tunnel diode (TD) and RTD (fabricated by Dr. Jue Wang) devices, and the radio frequency (RF) characterisation and small signal modelling of RTDs. The thesis also describes the design and measurement of hybrid TD oscillators for higher output power and the design and measurement of a planar Yagi antenna (fabricated by Khalid Alharbi) for THz applications. To enable oscillation free current-voltage characterisation of tunnel diodes, a commonly employed method is the use of a suitable resistor connected across the device to make the total differential resistance in the NDR region positive. However, this approach is not without problems as the value of the resistor has to satisfy certain conditions or else bias oscillations would still be present in the NDR region of the measured I-V characteristics. This method is difficult to use for RTDs which are fabricated on wafer due to the discrepancies in designed and actual resistance values of fabricated resistors using thin film technology. In this work, using pulsed DC rather than static DC measurements during device characterisation were shown to give accurate characteristics in the NDR region without the need for a stabilisation resistor. This approach allows for direct oscillation free characterisation for devices. Experimental results show that the I-V characterisation of tunnel diodes and RTD devices free of bias oscillations in the NDR region can be made. In this work, a new power-combining topology to address the limitations of low output power of TD and RTD oscillators is presented. The design employs the use of two oscillators biased separately, but with the combined output power from both collected at a single load. Compared to previous approaches, this method keeps the frequency of oscillation of the combined oscillators the same as for one of the oscillators. Experimental results with a hybrid circuit using two tunnel diode oscillators compared with a single oscillator design with similar values shows that the coupled oscillators produce double the output RF power of the single oscillator. This topology can be scaled for higher (up to terahertz) frequencies in the future by using RTD oscillators. Finally, a broadband Yagi antenna suitable for wireless communication at terahertz frequencies is presented in this thesis. The return loss of the antenna showed that the bandwidth is larger than the measured range (140-220 GHz). A new method was used to characterise the radiation pattern of the antenna in the E-plane. This was carried out on-wafer and the measured radiation pattern showed good agreement with the simulated pattern. In summary, this work makes important contributions to the accurate characterisation and modelling of TDs and RTDs, circuit-based techniques for power combining of high frequency TD or RTD oscillators, and to antennas suitable for on chip integration with high frequency oscillators.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this contribution, a system identification procedure of a two-input Wiener model suitable for the analysis of the disturbance behavior of integrated nonlinear circuits is presented. The identified block model is comprised of two linear dynamic and one static nonlinear block, which are determined using an parameterized approach. In order to characterize the linear blocks, an correlation analysis using a white noise input in combination with a model reduction scheme is adopted. After having characterized the linear blocks, from the output spectrum under single tone excitation at each input a linear set of equations will be set up, whose solution gives the coefficients of the nonlinear block. By this data based black box approach, the distortion behavior of a nonlinear circuit under the influence of an interfering signal at an arbitrary input port can be determined. Such an interfering signal can be, for example, an electromagnetic interference signal which conductively couples into the port of consideration. © 2011 Author(s).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Crossing the Franco-Swiss border, the Large Hadron Collider (LHC), designed to collide 7 TeV proton beams, is the world's largest and most powerful particle accelerator the operation of which was originally intended to commence in 2008. Unfortunately, due to an interconnect discontinuity in one of the main dipole circuit's 13 kA superconducting busbars, a catastrophic quench event occurred during initial magnet training, causing significant physical system damage. Furthermore, investigation into the cause found that such discontinuities were not only present in the circuit in question, but throughout the entire LHC. This prevented further magnet training and ultimately resulted in the maximum sustainable beam energy being limited to approximately half that of the design nominal, 3.5-4 TeV, for the first three years of operation (Run 1, 2009-2012) and a major consolidation campaign being scheduled for the first long shutdown (LS 1, 2012-2014). Throughout Run 1, a series of studies attempted to predict the amount of post-installation training quenches still required to qualify each circuit to nominal-energy current levels. With predictions in excess of 80 quenches (each having a recovery time of 8-12+ hours) just to achieve 6.5 TeV and close to 1000 quenches for 7 TeV, it was decided that for Run 2, all systems be at least qualified for 6.5 TeV operation. However, even with all interconnect discontinuities scheduled to be repaired during LS 1, numerous other concerns regarding circuit stability arose. In particular, observations of an erratic behaviour of magnet bypass diodes and the degradation of other potentially weak busbar sections, as well as observations of seemingly random millisecond spikes in beam losses, known as unidentified falling object (UFO) events, which, if persist at 6.5 TeV, may eventually deposit sufficient energy to quench adjacent magnets. In light of the above, the thesis hypothesis states that, even with the observed issues, the LHC main dipole circuits can safely support and sustain near-nominal proton beam energies of at least 6.5 TeV. Research into minimising the risk of magnet training led to the development and implementation of a new qualification method, capable of providing conclusive evidence that all aspects of all circuits, other than the magnets and their internal joints, can safely withstand a quench event at near-nominal current levels, allowing for magnet training to be carried out both systematically and without risk. This method has become known as the Copper Stabiliser Continuity Measurement (CSCM). Results were a success, with all circuits eventually being subject to a full current decay from 6.5 TeV equivalent current levels, with no measurable damage occurring. Research into UFO events led to the development of a numerical model capable of simulating typical UFO events, reproducing entire Run 1 measured event data sets and extrapolating to 6.5 TeV, predicting the likelihood of UFO-induced magnet quenches. Results provided interesting insights into the involved phenomena as well as confirming the possibility of UFO-induced magnet quenches. The model was also capable of predicting that such events, if left unaccounted for, are likely to be commonplace or not, resulting in significant long-term issues for 6.5+ TeV operation. Addressing the thesis hypothesis, the following written works detail the development and results of all CSCM qualification tests and subsequent magnet training as well as the development and simulation results of both 4 TeV and 6.5 TeV UFO event modelling. The thesis concludes, post-LS 1, with the LHC successfully sustaining 6.5 TeV proton beams, but with UFO events, as predicted, resulting in otherwise uninitiated magnet quenches and being at the forefront of system availability issues.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A lógica fuzzy admite infinitos valores lógicos intermediários entre o falso e o verdadeiro. Com esse princípio, foi elaborado neste trabalho um sistema baseado em regras fuzzy, que indicam o índice de massa corporal de animais ruminantes com objetivo de obter o melhor momento para o abate. O sistema fuzzy desenvolvido teve como entradas as variáveis massa e altura, e a saída um novo índice de massa corporal, denominado Índice de Massa Corporal Fuzzy (IMC Fuzzy), que poderá servir como um sistema de detecção do momento de abate de bovinos, comparando-os entre si através das variáveis linguísticas )Muito BaixaM, ,BaixaB, ,MédiaM, ,AltaA e Muito AltaM. Para a demonstração e aplicação da utilização deste sistema fuzzy, foi feita uma análise de 147 vacas da raça Nelore, determinando os valores do IMC Fuzzy para cada animal e indicando a situação de massa corpórea de todo o rebanho. A validação realizada do sistema foi baseado em uma análise estatística, utilizando o coeficiente de correlação de Pearson 0,923, representando alta correlação positiva e indicando que o método proposto está adequado. Desta forma, o presente método possibilita a avaliação do rebanho, comparando cada animal do rebanho com seus pares do grupo, fornecendo desta forma um método quantitativo de tomada de decisão para o pecuarista. Também é possível concluir que o presente trabalho estabeleceu um método computacional baseado na lógica fuzzy capaz de imitar parte do raciocínio humano e interpretar o índice de massa corporal de qualquer tipo de espécie bovina e em qualquer região do País.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Repercussions of innovation adoption and diffusion studies have long been imperative to the success of novel introductions. However, perceptions and deductions of current innovation understandings have been changing over time. The paradigm shift from the goods-dominant (G-D) logic to the service-dominant (S-D) logic potentially makes the distinction between product (goods) innovation and service innovation redundant as the S-D logic lens views all innovations as service innovations (Vargo and Lusch, 2004; 2008; Lusch and Nambisan, 2015). From this perspective, product innovations are in essence service innovations, as goods serve as mere distribution mechanisms to deliver service. Nonetheless, the transition to such a broadened and transcending view of service innovation necessitates concurrently a change in the underlying models used to investigate innovation and its subsequent adoption. The present research addresses this gap by engendering a novel model for the most crucial period of service diffusion within the S-D logic context – the post-initial adoption phase, which demarcates an individual’s behavior after the initial adoption decision of a service. As a wellfounded understanding of service diffusion and the complementary innovation adoption still lingers in its infancy, the current study develops a model based on interdisciplinary domains mapping. Here fore, knowledge of the relatively established viral source domain is mapped to the comparatively undetermined target domain of service innovation adoption. To assess the model and test the importance of the explanatory variables, survey data from 750 respondents of a bank in Northern Germany is scrutinized by means of Structural Equation Modeling (SEM). The findings reveal that the continuance intention of a customer, actual usage of the service and the customer influencer value all constitute important postinitial adoption behavior that have meaningful implications for a successful service adoption. Second, the four constructs customer influencer value, organizational commitment, perceived usefulness and service customization are evidenced to have a differential impact on a iv customer’s post-initial adoption behavior. Third, this study indicates that post-initial adoption behavior further underlies the influence of a user’s age and besides that is also provoked by the internal and external environments of service adoption. Finally, this research amalgamates the broad view of service innovation by Nambisan and Lusch (2015) with the findings ensuing this enquiry’s model to arrive at a framework that it both, generalizable and practically applicable. Implications for academia and practitioners are captured along with avenues for future research.