938 resultados para fractal geometry
Resumo:
This paper characterizes when a Delone set X in R-n is an ideal crystal in terms of restrictions on the number of its local patches of a given size or on the heterogeneity of their distribution. For a Delone set X, let N-X (T) count the number of translation-inequivalent patches of radius T in X and let M-X (T) be the minimum radius such that every closed ball of radius M-X(T) contains the center of a patch of every one of these kinds. We show that for each of these functions there is a gap in the spectrum of possible growth rates between being bounded and having linear growth, and that having sufficiently slow linear growth is equivalent to X being an ideal crystal. Explicitly, for N-X (T), if R is the covering radius of X then either N-X (T) is bounded or N-X (T) greater than or equal to T/2R for all T > 0. The constant 1/2R in this bound is best possible in all dimensions. For M-X(T), either M-X(T) is bounded or M-X(T) greater than or equal to T/3 for all T > 0. Examples show that the constant 1/3 in this bound cannot be replaced by any number exceeding 1/2. We also show that every aperiodic Delone set X has M-X(T) greater than or equal to c(n)T for all T > 0, for a certain constant c(n) which depends on the dimension n of X and is > 1/3 when n > 1.
Resumo:
The forging characteristics of an Al-Cu-Mg-Si-Sn alloy are examined using it new testing strategy which incorporates a double truncated cone specimen and finite element modelling. This sample geometry produces controlled strain distributions within a single specimen and can readily identify the specific strain required to achieve a specific microstructural event by matching the metallographic data with the strain profiles calculated from finite element software, The friction conditions were determined using the conventional friction ring test, which was evaluated using finite element software. The rheological properties of the alloy, evaluated from compression testing of right cylinders, are similar to the properties of conventional aluminium forgings. A hoop strain develops at the outer diameter of the truncated cones and this leads to pore opening at the outer few millimetres. The porosity is effectively removed when the total strain equals the net compressive strain. The strain profiles that develop in the truncated cones are largely independent of the processing temperature and the strain rate although the strain required for pore closure increases as the forging temperature is reduced. This suggests that the microstructure and the strain rate sensitivity may also be important factors controlling pore behaviour. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
In this note strongly regular graphs with new parameters are constructed using nested "blown up" quadrics in projective spaces. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
A perp-system R(r) is a maximal set of r-dimensional subspaces of PG(N,q) equipped with a polarity rho, such that the tangent space of an element of R(r) does not intersect any element of R(r). We prove that a perp-system yields partial geometries, strongly regular graphs, two-weight codes, maximal arcs and k-ovoids. We also give some examples, one of them yielding a new pg(8,20,2).
Resumo:
We use published and new trace element data to identify element ratios which discriminate between arc magmas from the supra-subduction zone mantle wedge and those formed by direct melting of subducted crust (i.e. adakites). The clearest distinction is obtained with those element ratios which are strongly fractionated during refertilisation of the depleted mantle wedge, ultimately reflecting slab dehydration. Hence, adakites have significantly lower Pb/Nd and B/Be but higher Nb/Ta than typical arc magmas and continental crust as a whole. Although Li and Be are also overenriched in continental crust, behaviour of Li/Yb and Be/Nd is more complex and these ratios do not provide unique signatures of slab melting. Archaean tonalite-trondhjemite-granodiorites (TTGs) strongly resemble ordinary mantle wedge-derived arc magmas in terms of fluid-mobile trace element content, implying that they-did not form by slab melting but that they originated from mantle which was hydrated and enriched in elements lost from slabs during prograde dehydration. We suggest that Archaean TTGs formed by extensive fractional crystallisation from a mafic precursor. It is widely claimed that the time between the creation and subduction of oceanic lithosphere was significantly shorter in the Archaean (i.e. 20 Ma) than it is today. This difference was seen as an attractive explanation for the presumed preponderance of adakitic magmas during the first half of Earth's history. However, when we consider the effects of a higher potential mantle temperature on the thickness of oceanic crust, it follows that the mean age of oceanic lithosphere has remained virtually constant. Formation of adakites has therefore always depended on local plate geometry and not on potential mantle temperature.
Resumo:
The effects of convective and absolute instabilities on the formation of drops formed from cylindrical liquid jets of glycerol/water issuing into still air were investigated. Medium-duration reduced gravity tests were conducted aboard NASA's KC-135 and compared to similar tests performed under normal gravity conditions to aid in understanding the drop formation process. In reduced gravity, the Rayleigh-Chandrasekhar Equation was found to accurately predict the transition between a region of absolute and convective instability as defined by a critical Weber number. Observations of the physics of the jet, its breakup, and subsequent drop dynamics under both gravity conditions and the effects of the two instabilities on these processes are presented. All the normal gravity liquid jets investigated, in regions of convective or absolute instability, were subject to significant stretching effects, which affected the subsequent drop and associated geometry and dynamics. These effects were not displayed in reduced gravity and, therefore, the liquid jets would form drops which took longer to form (reduction in drop frequency), larger in size, and more spherical (surface tension effects). Most observed changes, in regions of either absolute or convective instabilities, were due to a reduction in the buoyancy force and an increased importance of the surface tension force acting on the liquid contained in the jet or formed drop. Reduced gravity environments allow better investigations to be performed into the physics of liquid jets, subsequently formed drops, and the effects of instabilities on these systems. In reduced gravity, drops form up to three times more slowly and as a consequence are up to three times larger in volume in the theoretical absolute instability region than in the theoretical convective instability region. This difference was not seen in the corresponding normal gravity tests due to the masking effects of gravity. A drop is shown to be able to form and detach in a region of absolute instability, and spanning the critical Weber number (from a region of convective to absolute instability) resulted in a marked change in dynamics and geometry of the liquid jet and detaching drops. (C) 2002 American Institute of Physics.
Resumo:
High quality MSS membranes were synthesised by a single-step and two-step catalysed hydrolyses employing tetraethylorthosilicate (TEOS), absolute ethanol (EtOH), I M nitric acid (HNO3) and distilled water (H2O). The Si-29 NMR results showed that the two-step xerogels consistently had more contribution of silanol groups (Q(3) and Q(2)) than the single-step xerogel. According to the fractal theory, high contribution of Q(2) and Q(3) species are responsible for the formation of weakly branched systems leading to low pore volume of microporous dimension. The transport of diffusing gases in these membranes is shown to be activated as the permeance increased with temperature. Albeit the permeance of He for both single-step and two-step membranes are very similar, the two-step membranes permselectivity (ideal separation factor) for He/CO2 (69-319) and He/CH4 (585-958) are one to two orders of magnitude higher than the single-step membranes results of 2-7 and 69, respectively. The two-step membranes have high activation energy for He and H-2 permeance, in excess of 16 kJ mol(-1). The mobility energy for He permeance is three to six-fold higher for the two-step than the single-step membranes. As the mobility energy is higher for small pores than large pores and coupled with the permselectivity results, the two-step catalysed hydrolysis sol-gel process resulted in the formation of pore sizes in the region of 3 Angstrom while the single-step process tended to produce slightly larger pores. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Purpose: Because it is believed that bone may respond to exercise differently at different ages, we compared bone responses in immature and mature rats after 12 wk of treadmill running. Methods: Twenty-two immature (5-wk-old) and 21 mature (17-wk-old) female Sprague Dawley rats were randomized into a running (trained, N = 10 immature, 9 mature) or a control group (controls, N 12 immature, 12 mature) before sacrifice 12 wk later. Rats ran on a treadmill five times per week for 60-70 min at speeds up to 26 m.min(-1). Both at baseline and after intervention, we measured total body, lumbar spine, and proximal femoral bone mineral, as well as total body soft tissue composition using dual-energy x-ray absorptiometry (DXA) in vivo. After sacrificing the animals, we measured dynamic and static histomorphometry and three-point bending strength of the tibia. Results: Running training was associated with greater differences in tibial subperiosteal area, cortical cross-sectional area, peak load, stiffness, and moment of inertia in immature and mature rats (P < 0.05). The trained rats had greater periosteal bone formation rates (P < 0.01) than controls, but there was no difference in tibial trabecular bone histomorphometry. Similar running-related gains were seen in DXA lumbar spine area (P = 0.04) and bone mineral content (BMC; P = 0.03) at both ages. For total body bone area and BMC, the immature trained group increased significantly compared with controls (P < 0.05), whereas the mature trained group gained less than did controls (P < 0.01). Conclusion: In this in vivo model, where a similar physical training program was performed by immature and mature female rats, we demonstrated that both age groups were sensitive to loading and that bone strength gains appeared to result more from changes in bone geometry than from improved material properties.
Resumo:
The characteristics of sharkskin surface instability for linear low density polyethylene are studied as a function of film blowing processing conditions. By means of scanning electron microscopy and surface profilometry, is it found that for the standard industrial die geometry studied, sharkskin only occurs on the inside of the film bubble. Previous work suggests that this instability may be due to critical extensional stress levels at the exit of the die. Isothermal integral viscoelastic simulations of the annular extrusion process are reported, and confirm that the extensional stress at the die exit is large enough to cause local melt rupture. However the extensional stress level at the outer die wall predicts melt rupture of the outside bubble surface also, which contradicts the experimental findings. A significant temperature gradient is expected to exist across the die gap at the exit of the die, due to the external heating of the die and the low conductivity, of the polymer melt. It is shown that a gradient of 20 degreesC is required to cause sharkskin to only appear on the inner bubble surface.
Resumo:
The kinetics of single component adsorption on activated carbon is investigated here using a heterogeneous vacancy solution theory (VST) of adsorption. The adsorption isotherm is developed to account for the adsorbate non-ideality due to the size difference between the adsorbate molecule and the vacant site, while incorporating adsorbent heterogeneity through a pore-width-related potential energy. The transport process in the bidisperse carbon considers coupled mass transfer in both macropore and micropore phases simultaneously. Adsorbate diffusion in the micropore network is modeled through effective medium theory, thus considering pore network connectivity in the adsorbent, with the activation energy for adsorbate diffusion related to the adsorption energy, represented by the Steele 10-4-3 potential for carbons. Experimental data of five hydrocarbons, CO2 and SO2 on Ajax carbon at multiple temperatures, as well as three hydrocarbons on Norit carbon at three temperatures are first fitted by the heterogeneous VST model to obtain the isotherm parameters, followed by application of the kinetic model to uptake data on carbon particles of different sizes and geometry at various temperatures. For the hydrocarbons studied, the model can successfully correlate the experimental data for both adsorption equilibrium and kinetics. However, there is some deviation in the fit of the desorption kinetics for polar compounds such as CO2 and SO2, due to the inadequacy of the L-J potential model in this case. The significance of viscous transport in the micropores is also considered here and found to be negligible, consistent with recent molecular simulation studies. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
This paper introduces a new reconstruction algorithm for electrical impedance tomography. The algorithm assumes that there are two separate regions of conductivity. These regions are represented as eccentric circles. This new algorithm then solves for the location of the eccentric circles. Due to the simple geometry of the forward problem, an analytic technique using conformal mapping and separation of variables has been employed. (C) 2002 John Wiley Sons, Inc.
Resumo:
Along with material characteristics and geometry, the climate in which a mine is located can have a dramatic effect on the appropriate options for rehabilitation. The paper outlines the setting, mining, milling and waste disposal at Kidston Gold Mine's open pit operations in the semi-arid climate of North Queensland, Australia, before focusing on the engineering aspects of the rehabilitation of Kidston. The mine took a holistic and proactive approach to rehabilitation, and was prepared to demonstrate a number of innovative approaches, which are described in the paper. Engineering issues that had to be addressed included the geotechnical stability and deformation of waste rock dumps, including a 240 m high in-pit dump: the construction and performance monitoring of a “store and release” cover over potentially acid forming mineralised waste rock; erosion from the side slopes of the waste rock dumps; the in-pit co-disposal of waste rock and thickened tailings; the geotechnical stability of the tailings dam wall; the potential for erosion of bare tailings; the water balance of the tailings dam; direct revegetation of the tailings; and the pit hydrology. The rehabilitation of the mine represents an important benchmark in mine site rehabilitation best practice, from which lessons applicable worldwide can be shared.
Resumo:
The particle-based Lattice Solid Model (LSM) was developed to provide a basis to study the physics of rocks and the nonlinear dynamics of earthquakes (MORA and PLACE, 1994; PLACE and MORA, 1999). A new modular and flexible LSM approach has been developed that allows different microphysics to be easily included in or removed from the model. The approach provides a virtual laboratory where numerical experiments can easily be set up and all measurable quantities visualised. The proposed approach provides a means to simulate complex phenomena such as fracturing or localisation processes, and enables the effect of different micro-physics on macroscopic behaviour to be studied. The initial 2-D model is extended to allow three-dimensional simulations to be performed and particles of different sizes to be specified. Numerical bi-axial compression experiments under different confining pressure are used to calibrate the model. By tuning the different microscopic parameters (such as coefficient of friction, microscopic strength and distribution of grain sizes), the macroscopic strength of the material and can be adjusted to be in agreement with laboratory experiments, and the orientation of fractures is consistent with the theoretical value predicted based on Mohr-Coulomb diagram. Simulations indicate that 3-D numerical models have different macroscopic properties than in 2-D and, hence, the model must be recalibrated for 3-D simulations. These numerical experiments illustrate that the new approach is capable of simulating typical rock fracture behaviour. The new model provides a basis to investigate nucleation, rupture and slip pulse propagation in complex fault zones without the previous model limitations of a regular low-level surface geometry and being restricted to two-dimensions.
Resumo:
In order to understand the earthquake nucleation process, we need to understand the effective frictional behavior of faults with complex geometry and fault gouge zones. One important aspect of this is the interaction between the friction law governing the behavior of the fault on the microscopic level and the resulting macroscopic behavior of the fault zone. Numerical simulations offer a possibility to investigate the behavior of faults on many different scales and thus provide a means to gain insight into fault zone dynamics on scales which are not accessible to laboratory experiments. Numerical experiments have been performed to investigate the influence of the geometric configuration of faults with a rate- and state-dependent friction at the particle contacts on the effective frictional behavior of these faults. The numerical experiments are designed to be similar to laboratory experiments by DIETERICH and KILGORE (1994) in which a slide-hold-slide cycle was performed between two blocks of material and the resulting peak friction was plotted vs. holding time. Simulations with a flat fault without a fault gouge have been performed to verify the implementation. These have shown close agreement with comparable laboratory experiments. The simulations performed with a fault containing fault gouge have demonstrated a strong dependence of the critical slip distance D-c on the roughness of the fault surfaces and are in qualitative agreement with laboratory experiments.
Resumo:
A more efficient classifying cyclone (CC) for fine particle classification has been developed in recent years at the JKMRC. The novel CC, known as the JKCC, has modified profiles of the cyclone body, vortex finder, and spigot when compared to conventional hydrocyclones. The novel design increases the centrifugal force inside the cyclone and mitigates the short circuiting flow that exists in all current cyclones. It also decreases the probability of particle contamination in the place near the cyclone spigot. Consequently the cyclone efficiency is improved while the unit maintains a simple structure. An international patent has been granted for this novel cyclone design. In the first development stage-a feasibility study-a 100 mm JKCC was tested and compared with two 100 min commercial units. Very encouraging results were achieved, indicating good potential for the novel design. In the second development stage-a scale-up stage-the JKCC was scaled up to 200 mm in diameter, and its geometry was optimized through numerous tests. The performance of the JKCC was compared with a 150 nun commercial unit and exhibited sharper separation, finer separation size, and lower flow ratios. The JKCC is now being scaled up into a fill-size (480 mm) hydrocyclone in the third development stage-an industrial study. The 480 mm diameter unit will be tested in an Australian coal preparation plant, and directly compared with a commercial CC operating under the same conditions. Classifying cyclone performance for fine coal could be further improved if the unit is installed in an inclined position. The study using the 200 mm JKCC has revealed that sharpness of separation improved and the flow ratio to underflow was decreased by 43% as the cyclone inclination was varied from the vertical position (0degrees) to the horizontal position (90degrees). The separation size was not affected, although the feed rate was slightly decreased. To ensure self-emptying upon shutdown, it is recommended that the JKCC be installed at an inclination of 75-80degrees. At this angle the cyclone performance is very similar to that at a horizontal position. Similar findings have been derived from the testing of a conventional hydrocyclone. This may be of benefit to operations that require improved performance from their classifying cyclones in terms of sharpness of separation and flow ratio, while tolerating slightly reduced feed rate.