Powder forging of a sintered Al-3.8Cu-1Mg-0.8Si-O.1Sn alloy


Autoria(s): Dashwood, RJ; Schaffer, GB
Contribuinte(s)

Kostorz

Laremia

Werner

Whittabugr

Data(s)

01/01/2002

Resumo

The forging characteristics of an Al-Cu-Mg-Si-Sn alloy are examined using it new testing strategy which incorporates a double truncated cone specimen and finite element modelling. This sample geometry produces controlled strain distributions within a single specimen and can readily identify the specific strain required to achieve a specific microstructural event by matching the metallographic data with the strain profiles calculated from finite element software, The friction conditions were determined using the conventional friction ring test, which was evaluated using finite element software. The rheological properties of the alloy, evaluated from compression testing of right cylinders, are similar to the properties of conventional aluminium forgings. A hoop strain develops at the outer diameter of the truncated cones and this leads to pore opening at the outer few millimetres. The porosity is effectively removed when the total strain equals the net compressive strain. The strain profiles that develop in the truncated cones are largely independent of the processing temperature and the strain rate although the strain required for pore closure increases as the forging temperature is reduced. This suggests that the microstructure and the strain rate sensitivity may also be important factors controlling pore behaviour. (C) 2002 Elsevier Science B.V. All rights reserved.

Identificador

http://espace.library.uq.edu.au/view/UQ:62498

Idioma(s)

eng

Publicador

Elsevier

Palavras-Chave #Nanoscience & Nanotechnology #Materials Science, Multidisciplinary #Powder Forging #Aluminium #Pore Closure #C1 #291403 Alloy Materials #671099 Fabricated metal products not elsewhere classified
Tipo

Journal Article