Perp-systems and partial geometries
Contribuinte(s) |
T. Grundhoefer K. Strambach |
---|---|
Data(s) |
01/01/2001
|
Resumo |
A perp-system R(r) is a maximal set of r-dimensional subspaces of PG(N,q) equipped with a polarity rho, such that the tangent space of an element of R(r) does not intersect any element of R(r). We prove that a perp-system yields partial geometries, strongly regular graphs, two-weight codes, maximal arcs and k-ovoids. We also give some examples, one of them yielding a new pg(8,20,2). |
Identificador |
http://espace.library.uq.edu.au/view/UQ:62797/UQ62797_OA.pdf |
Idioma(s) |
eng |
Publicador |
de Gruyter |
Palavras-Chave | #Mathematics #Polar Spaces #C1 #230111 Geometry #780100 Non-oriented Research |
Tipo |
Journal Article |