Perp-systems and partial geometries


Autoria(s): De Clerck, Frank; Delanote, Mario; Hamilton, Nicholas; Mathon, Rudolf
Contribuinte(s)

T. Grundhoefer

K. Strambach

Data(s)

01/01/2001

Resumo

A perp-system R(r) is a maximal set of r-dimensional subspaces of PG(N,q) equipped with a polarity rho, such that the tangent space of an element of R(r) does not intersect any element of R(r). We prove that a perp-system yields partial geometries, strongly regular graphs, two-weight codes, maximal arcs and k-ovoids. We also give some examples, one of them yielding a new pg(8,20,2).

Identificador

http://espace.library.uq.edu.au/view/UQ:62797/UQ62797_OA.pdf

http://espace.library.uq.edu.au/view/UQ:62797

Idioma(s)

eng

Publicador

de Gruyter

Palavras-Chave #Mathematics #Polar Spaces #C1 #230111 Geometry #780100 Non-oriented Research
Tipo

Journal Article