985 resultados para calixarenes, tetraurea derivatives, dimerisation, self-assembly


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Supramolecular ionic networks combine singular properties such as self-healing behaviour and ionic conductivity. In this work we present an insight into the ionic conductivity and molecular dynamic behaviour of an amorphous and semicrystalline supramolecular ionic networks (iNets) that were synthesised by self-assembly of difunctional imidazolium dicationic molecules coupled with (trifluoromethane-sulfonyl) imide dianionic molecules. Relatively low ionic conductivity values were obtained for the semicrystalline iNet below its melting point (Tm =101°C) in comparison with the amorphous iNet for which the conductivity significantly increased (~3 orders of magnitude) above 100°C. Upon LiTFSI doping, the semicrystalline iNet reached conductivity values ~ 10-3 Scm-1 due to enhanced mobility of the network which was supported by solid-state static NMR. Furthermore, the overlapping of 19F and 7Li resonance lines from both the semicrystalline network and the LiTFSI suggests fast molecular motions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The successful commercialization of smart wearable garments is hindered by the lack of fully integrated carbon-based energy storage devices into smart wearables. Since electrodes are the active components that determine the performance of energy storage systems, it is important to rationally design and engineer hierarchical architectures atboth the nano- and macroscale that can enjoy all of the necessary requirements for a perfect electrode. Here we demonstrate a large-scale flexible fabrication of highly porous high-performance multifunctional graphene oxide (GO) and rGO fibers and yarns by taking advantage of the intrinsic soft self-assembly behavior of ultralarge graphene oxide liquid crystalline dispersions. The produced yarns, which are the only practical form of these architectures for real-life device applications, were found to be mechanically robust (Young's modulus in excess of 29 GPa) and exhibited high native electrical conductivity (2508 ± 632 S m(-1)) and exceptionally high specific surface area (2605 m(2) g(-1) before reduction and 2210 m(2) g(-1) after reduction). Furthermore, the highly porous nature of these architectures enabled us to translate the superior electrochemical properties of individual graphene sheets into practical everyday use devices with complex geometrical architectures. The as-prepared final architectures exhibited an open network structure with a continuous ion transport network, resulting in unrivaled charge storage capacity (409 F g(-1) at 1 A g(-1)) and rate capability (56 F g(-1) at 100 A g(-1)) while maintaining their strong flexible nature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Novel cisplatin (CDDP)-loaded, polypeptide-based vesicles for the targeted delivery of cisplatin to cancer cells have been prepared. These vesicles were formed from biocompatible and biodegradable maleimide-poly(ethylene oxide)114-b-poly(L-glutamic acid)12 (Mal-PEG114-b-PLG12) block copolymers upon conjugation with the drug itself. CDDP conjugation forms a short, rigid, cross-linked, drug-loaded, hydrophobic block in the copolymer, and subsequently induces self-assembly into hollow vesicle structures with average hydrodynamic diameters (Dh) of ∼ 270 nm. CDDP conjugation is critical to the formation of the vesicles. The reactive maleimide-PEG moieties that form the corona and inner layer of the vesicles were protected via formation of a reversible Diels-Alder (DA) adduct throughout the block copolymer synthesis so as to maintain their integrity. Drug release studies demonstrated a low and sustained drug release profile in systemic conditions (pH = 7.4, [Cl(-)] = 140 mM) with a higher "burst-like" release rate being observed under late endosomal/lysosomal conditions (pH = 5.2, [Cl(-)] = 35 mM). Further, the peripheral maleimide functionalities on the vesicle corona were conjugated to thiol-functionalized folic acid (FA) (via in situ reduction of a novel bis-FA disulfide, FA-SS-FA) to form an active targeting drug delivery system. These targeting vesicles exhibited significantly higher cellular binding/uptake into and dose-dependent cytotoxicity toward cancer cells (HeLa) compared to noncancerous cells (NIH-3T3), which show high and low folic acid receptor (FR) expression, respectively. This work thus demonstrates a novel approach to polypeptide-based vesicle assembly and a promising strategy for targeted, effective CDDP anticancer drug delivery.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The local inflammatory environment of the cell promotes the growth of epithelial cancers. Therefore, controlling inflammation locally using a material in a sustained, non-steroidal fashion can effectively kill malignant cells without significant damage to surrounding healthy cells. A promising class of materials for such applications are the nanostructured scaffolds formed by epitope containing minimalist self-assembled peptides (SAPs), as they are bioactive on a cellular length scale, whilst presenting as an easily handled hydrogel. Here, we show that the assembly process distributes an anti-inflammatory polysaccharide, fuccoidan, localised to the nanofibers to function as an anti-inflammatory biomaterial for cancer therapy. We show that it supports healthy cells, whilst inducing apoptosis in cancerous endothelial cells, as demonstrated by the downregulation of the proinflammatory gene and protein expression pathways associated with epithelial cancer progression. Our findings highlight an innovative material approach with potential applications as local epithelial cancer immunotherapy and drug delivery vehicles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Micro-cube-shaped lead zirconate titanate was synthesized using the microwave-assisted hydrothermal method. Photoluminescence and field emission scanning electron microscopy were used for monitoring the formation of mesocrystals. Based on these results, a growth mechanism was then proposed which involved nanoparticle aggregation, nanoplate self-assembly on specific architecture and the final formation of mesoscopic micro-cube-shaped lead zirconate titanate. (C) 2011 Elsevier B. V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

C(13)H(16)Cl(2)Te,M(r)=370.76,P2(1)/a, a = 8.1833(8), b = 8.4163(8), c = 20.787(2) A, beta = 99.52(1)degrees, Z = 4, R(1) = 0,0275. The primary coordination around the Te(IV) atom is consistent with a pseudo-trigonal bipyramidal bond configuration with two Cl atoms occupying axial positions while the C atoms and the lone pair of electrons occupy the equatorial positions. The Te(IV) atom is involved in an intermolecular secondary interaction resulting in the self assembly of zigzag-chains supramolecular array. In order to determine the theoretical basis set for the Te atom which leads to the best agreement with the experimental data, a large series of geometry optimizations were performed on dichloro dimethyl Te(IV), as a model compound, and the results compared with the mean distances and angles obtained from 45 X-ray structures. The Ahlrichs basis set plus the Hay & Wadt ECP was selected and used for a series of calculations performed on the title compound.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two cis-related palladium(II) complexes [PdCl(2)(PPh(3))(tu)] (1) and [PdCl(2)(tmen)] (2) {PPh(3) = triphenylphosphine, tu = thiourea, tmen = N,N,N,N-tetramethylethylenediamine} have been synthesized and characterized by elemental analysis, IR and NMR spectroscopies, and single crystal X-ray diffraction. In 1, N-H center dot center dot center dot Cl hydrogen bonds are responsible for the formation of a dimer which connects to an adjacent one through weak C-H center dot center dot center dot Cl interactions, yielding 1D tapes. The crystal packing of compound 2 consists of zigzag ribbons of [PdCl(2)(tmen)] self-assembled by C-H center dot center dot center dot Cl hydrogen bonds which also holds the chains together, giving rise to a 2D layered structure. (C) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tellurium tetrachloride adds to alkynes via two pathways: a concerted syn addition, that yields Z-tri- and tetra-substituted alkenes or by an anti addition that yields E-alkenes. The mechanistic aspects of these divergent pathways have been reevaluated at the light of crystallographic data. The molecules, of the title compound, in the crystal, are associated in a helical fashion with a Te...Te pitch of 6.3492(6) angstrom. As it exhibits inhibitory activity for cathepsin B and in order to gain more insight of the inhibition mechanism, a docking study was undertaken providing insight on why organic telluranes are more efficient inhibitors than inorganic ones as AS-101. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We used dynamic light scattering (DLS), a steady-state fluorescence, time resolved fluorescence quenching (TRFQ), tensiometry, conductimetry, and isothermal titration calorimetry (ITC) to investigate the self-assembly of the cationic surfactant cetyltrimethylammonium sulfate (CTAS) in aqueous solution, which has SO42- as divalent counterion. We obtained the critical micelled concentration (cmc), aggregation number (N-agg), area per monomer (a(0)), hydrodynamic radius (R-H), and degree of counterion dissociation (alpha) of CTAS micelles in the absence and presence of up to 1 M Na2SO4 and at temperatures of 25 and 40 degrees C. Between 0.01 and 0.3 M salt the hydrodynamic radius of CTAS micelle R-H approximate to 16 angstrom is roughly independent on Na2SO4 concentration; below and above this concentration range R-H increases steeply with the salt concentration, indicating micelle structure transition, from spherical to rod-like structures. R-H increases only slightly as temperature increases from 25 to 40 degrees C, and the cmc decreases initially very steeply with Na2SO4 concentration up to about 10 mM, and thereafter it is constant. The area per surfactant at the water/air interface, a(0), initially increases steeply with Na2SO4 concentration, and then decrases above ca. 10 mM. Conductimetry gives alpha = 0.18 for the degree of counterion dissociation, and N-agg obtained by fluorescence methods increases with surfactant concentration but it is roughly independent of up to 80 mM salt. The ITC data yield cmc of 0.22 mM in water, and the calculated enthalpy change of micelle formation, Delta H-mic = 3.8 kJ mol(-1), Gibbs free energy of micellization of surfactant molecules, Delta G(mic) = -38.0 kJ mol(-1) and entropy T Delta S-mic = 41.7 kJ mol(-1) indicate that the formation of CTAS micelles is entropy-driven. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The new complex [Cu(NCS)(2)(pn)] (1) (pn = 1,3-propanediamine) has been synthesized and characterized by elemental analysis, infrared and electronic spectroscopy. Single crystal X-ray diffraction studies revealed that complex 1 is made up of neutral [Cu(NCS)(2)(pn)] units which are connected by mu-1,3,3-thiocyanato groups to yield a 2D metal-organic framework with a brick-wall network topology. Intermolecular hydrogen bonds of the type NH...SCN and NH...NCS are also responsible for the stabilization of the crystal structure. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The coordination polymers [Cd(mu-Cl)(2)(HPz)(2)](n) (1) and [Cd(mu-1,3-SCN)(2)(HPz)(2)](n) (2) (HPz = pyrazole) have been prepared and characterized by elemental analysis, infrared spectroscopy, and single crystal X-ray diffraction. Both complexes exhibited chain structures made by linear arrays of Cd(II) bridged by chloro (1) or inversely related 1,3-SCN groups (2) and the pyrazole ligands at the apical. sites. Intermolecular hydrogen bonds and another non-covalent interactions are responsible for the self-assembly of linear chains into 2D networks. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Synthesis and self-assembly of nanomaterials can be controlled by the properties of soft matter. on one hand, dedicated nanoreactors such as reverse microemulsions or miniemulsions can be designed. on the other hand, direct shape control can be provided by the topology of liquid crystals that confine the reacting medium within a specific geometry. In the first case, the preparation of micro- or miniemulsions generally requires energetic mechanical stirring. The second approach uses thermodynamically stable systems, but it remains usually limited to binary (water + surfactant) systems. We report the preparation of different families of materials in highly ordered quaternary mediums that exhibit a liquid crystal structure with a high cell parameter. They were prepared with the proper ratios of salted water, nonpolar solvent, surfactant. and cosurfactants that form spontaneously swollen hexagonal phases. These swollen liquid crystals can be prepared from all classes of surfactants (cationic, anionic, and nonionic). They contain a regular network of parallel cylinders, whose diameters can be swollen with a nonpolar solvent, that are regularly spaced in a continuous aqueous salt solution. We demonstrate in the present report that both aqueous and organic phases can be used as nanoreactors for the preparation of materials. This property is illustrated by various examples such as the synthesis of platinum nanorods prepared in the aqueous phase or zirconia needles or the photo- or gamma-ray-induced polymerization of polydiacetylene in the organic phase. In all cases, materials can be easily extracted and their final shapes are directed by the structure-directing effect imposed by the liquid crystal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)