940 resultados para allograft inflammatory factor 1
Resumo:
Foraminifera counts and climatic assemblages from the Tore Seamount are used to approach the glacial and interglacial changes in temperature and productivity on the Iberian Margin over the last 225 kyr. Chronostratigraphy is based on Globigerinoides ruber and Globigerina bulloides oxygen isotopes and supported by foraminifera and carbonate stadial fluctuations. Foraminifera indicate cooling from late interglacial stage 5 to the beginning of Termination I (TI). Neogloboquadnna pachyderma-s reflects cold conditions during glacial stages 4-2. In contrast, glacial stage 6 is dominated by warmer N. pachyderma-d and dutertrei and a restricted arctic assemblage. Past sea surface temperatures confirm the general cooling, reaching 4.3°C (SIMMAX.28) during stage 2. Multiple productivity proxies such as organic carbon, productivity-related foraminifera, and delta13C constrain the changes observed. A productivity increase occurs after interglacial stage 5, enhanced from late glacial stage 3 to TI Present-day satellite-detected phytoplankton plumes off Portugal would have accounted in the past glacial stages for the general productivity increase over the Tore. On top of this, welldefined peaks of organic carbon and productivity-related foraminifera correspond with Heinrich events 1-4.
Resumo:
Planktonic foraminiferal census counts are used to construct high-resolution sea surface temperature (SST) and subsurface (thermocline) temperature records at a core site in the Tobago Basin, Lesser Antilles. The record is used to document climatic variability at this tropical site in comparison to middle- and high-latitude sites and to test current concepts of cross-equatorial heat transports as a major player in interhemispheric climate variability. Temperatures are estimated using transfer function and modern analog techniques. Glacial - maximum cooling of 2.5°-3°C is indicated; maximum cooling by 4°C is inferred for isotope stage 3. The SST record displays millennial-scale variability with temperature jumps of up to 3°C and closely tracks the structure of ice-core Dansgaard/Oeschger cycles. SST variations in part of the record run opposite to the SST evolution at high northern latitude sites, pointing to thermohaline circulation and marine heat transport as an important factor driving SST in the tropical and high-latitude Atlantic, both on orbital and suborbital timescales.
Resumo:
The Canary Islands region occupies a key position with respect to biogeochemical cycles, with the zonal transition from oligotrophic to nutrient-rich waters and the contribution of Saharan dust to the particle flux. We present the distribution of geochemical proxies (TOC, carbonate, d15N, d13Corg, C/N-ratio) and micropaleontological parameters (diatoms, dinoflagellates, foraminifera, pteropods), in 80 surface-sediment samples in order to characterise the influence of coastally upwelled water on the domain of the subtropical gyre. Results of the surface-sediment analyses confirmed the high biomass gradient from the coast to the open ocean inferred from satellite data of surface chlorophyll or SST. The distribution of total dinoflagellate cysts, the planktic foraminifera species Globigerina bulloides, the diatom resting spore Chaetoceros spp., and TOC concentration coincided well with the areas of strong filament production off Cape Ghir and Cape Yubi. The warm-water planktic foraminifera Globigerinoides ruber (white), the diatom Nitzschia spp., and the d15N-values showed the opposite trend with high values in the open ocean. Factor analyses on the planktic foraminifera species distribution indicated three major assemblages in the Canary Islands region that represent the present surface-water conditions from the upwelling influenced region via a mixing area towards the subtropical gyre.
Resumo:
We investigated Oligocene and early Miocene benthic foraminiferal faunas (> 105 µm in size) from Ocean Drilling Program (Leg 199) Site 1218 (4826 m water depth and ~3300 to ~4000 m paleo-water depth) and Site 1219 (5063 m water depth and ~4200 to ~4400 m paleo-water depth) to understand the response of abyssal benthic foraminifera to mid-Oligocene glacial events in the eastern Equatorial Pacific Ocean. Two principal factor assemblages were recognized. The Factor 1 assemblage (common Nuttallides umbonifer) is related to either an influx of the Southern Component Water (SCW), possibly carbonate undersaturated, or a decrease in seasonality of the food supply from the surface ocean. The Factor 2 assemblage is characterized by typical deep-sea taxa living under variable trophic conditions, possibly with a seasonal component in food supply. The occurrence of abyssal benthic foraminifera faunas during the mid-Oligocene depends on either the effect of SCW or the seasonality of food resources. The Factor 1 assemblage was most common near 76Ol-C11r, 73Ol-C10rn and 67Ol-C9n (ca. 30.2, 29.1 and 26.8 Ma respectively by Pälike et al. (2006, doi:10.1126/science.1133822)). This indicates that the effect of SCW increased or the seasonal input of food from the surface ocean to benthic environments was weakened close to these glacial events. In contrast, the huge export flux of small biogenic carbonate particles close to these glacial events might be responsible for carbonate-rich sediments buffering carbonate undersaturation. Changes in deep-water masses or the periodicity of food supply from the surface ocean and variation in surface carbonate production affected by orbital forcing had an impact on the mid-Oligocene faunas of abyssal benthic foraminifera around the intervals of glacial events in the eastern Equatorial Pacific Ocean. The Factor 1 assemblage decreased sharply at ? 30 Ma (29.8 Ma by Pälike et al. (2006), 30.0 Ma by CK95) and returned to dominance after ? 29 Ma (28.6 Ma by Pälike et al. (2006), 28.8 Ma by CK95). It is likely that the effect of SCW (possibly carbonate undersaturated) has intensified since the late Oligocene. The faunal transition of benthic foraminifera in the eastern Equatorial Pacific Ocean at ~29 Ma might be attributable to the influence of Northern Component Water (NCW) input to the Southern Ocean and the subsequent formation of SCW at about that time.
Resumo:
Fifty short sediment cores collected with a multiple corer and five box cores from the central Arctic Ocean were analysed to study the ecology and distribution of benthic foraminifers. To work out living faunal associations, standing stock and diversity, separate analyses of living (Rose Bengal stained) and dead foraminifers were carried out for the sediment surface. The size fractions between 63 and 125 µm and >125 µm were counted separately to allow comparison with former Arctic studies and with studies from the adjacent Norwegian-Greenland Sea, Barents Sea and the North Atlantic Ocean. Benthic foraminiferal associations are mainly controlled by the availability of food, and competition for food, while water mass characteristics, bottom current activity, substrate composition, and water depth are of minor importance. Off Spitsbergen in seasonally ice-free areas, high primary production rates are reflected by high standing stocks, high diversities, and foraminiferal associations (>125 µm) that are similar to those of the Norwegian-Greenland Sea. Generally, in seasonally ice-free areas standing stock and diversity increase with increasing food supply. In the central Arctic Ocean, the oligotrophic permanently ice-covered areas are dominated by epibenthic species. The limited food availability is reflected by very low standing stocks and low diversities. Most of these foraminiferal associations do not correspond to those of the Norwegian-Greenland Sea. The dominant associations include simple agglutinated species such as Sorosphaerae, Placopsilinellae, Komokiacea and Aschemonellae, as well as small calcareous species such as Stetsonia horvathi and Epistominella arctica. Those of the foraminiferal species that usually thrive under seasonally ice-free conditions in middle bathyal to lower bathyal water depth are found under permanently ice-covered conditions in water depths about 1000 m shallower, if present at all.
Resumo:
The Northern Bay of Bengal (NBoB) is a globally important region for deep-sea organic matter (OM) deposition due to massive fluvial discharge from the Ganges-Brahmaputra-Meghna (G-B-M) rivers and moderate to high surface productivity. Previous studies have focused on carbon burial in turbiditic sediments of the Bengal Fan. However, little is known about the storage of carbon in pelagic and hemipelagic sediments of the Bay of Bengal over millennial time scales. This study presents a comprehensive history of OM origin and fate as well as a quantification of carbon sediment storage in the Eastern Bengal Slope (EBS) during the last 18 ka. Bulk organic proxies (TOC, TIC, TN, d13CTOC, d15NTN) and content and composition of total hydrolysable amino acids (THAA) in a sediment core (SO188-342KL) from the EBS were analyzed. Three periods of high OM accumulation were identified: the Late Glacial (LG), the Bölling/Alleröd (B/A), and the Early Holocene Climatic Optimum (EHCO). Lower eustatic sea level before 15 ka BP allowed a closer connection between the EBS and the fluvial debouch, favoring high terrestrial OM input to the core site. This connection was progressively lost between 15 and 7 ka BP as sea level rose to its present height and terrestrial OM input decreased considerably. Export and preservation of marine OM was stimulated during periods of summer monsoon intensification (B/A and EHCO) as a consequence of higher surface productivity enhanced by cyclonic-eddy nutrient pumping and fluvial nutrient delivery into the photic zone. Changes in the THAA composition indicate that the marine plankton community structure shifted from calcareous-dominated before 13 ka BP to siliceous-dominated afterwards. They also indicate that the relative proportion of marine versus terrestrial OM deposited at site 342KL was primarily driven by relative sea level and enlarged during the Holocene. The ballasting effect of lithogenic particles during periods of high coastal proximity and/or enhanced fluvial discharge promoted the export and preservation of OM. The high organic carbon accumulation rates in the EBS during the LG (18-17 ka BP) were 5-fold higher than at present and comparable to those of glacial upwelling areas. Despite the differences in sediment and OM transport and storage among the Western and Eastern sectors of the NBoB, this region remains important for global carbon sequestration during sea level low-stands. In addition, the summer monsoon was a key promotor of terrestrial and marine OM export to the deep-ocean, highlighting its relevance as regulator of the global carbon budget.
Resumo:
Benthic and selected planktic foraminifera and stable isotope records were determined in a piston core from the Gulf of Aden, NW Arabian Sea that spans the last 530 ka. The benthic foraminifera were grouped into four principal assemblages using Q-mode Principal Component Analyses. Comparison of each of these assemblages with the fauna of the nearby regions enabled us to identify their specific environmental requirements as a function of variability in food supply and strength of the oxygen minimum zone and by that to use them as indicators of surface water productivity. The benthic foraminiferal productivity indicators coupled with the record of Globigerina bulloides, a planktic foraminifer known to be sensitive to productivity changes in the region, all indicate higher productivity during glacial intervals and productivity similar to present or even reduced during interglacial stages. This trend is opposite to the productivity pattern related to the SW summer monsoon of the Arabian Sea and indicates the role of the NE winter monsoon on the productivity of the Gulf of Aden. A period of exceptionally enhanced productivity is recognized in the Gulf of Aden region between ~60 and 13 kyr indicating the intensification of the NE winter monsoon to its maximal activity. Contemporaneous indication of increased productivity in other parts of the Arabian Sea, unexplained so far by the SW summer monsoon variability, might be related to the intensification of the NE winter monsoon. Another prominent event of high productivity, second in its extent to the last glacial productivity event is recognized between 430 and 460 kyr. These two events seem to correspond to periods of similar orbital positioning of rather low precession (and eccentricity) amplitude for a relatively long period. Glacial boundary conditions seem to control to a large extent the NE winter monsoon variability as also indicated by the dominance of the 100 ka cycle in the investigated time series. Secondary in their importance are the 23 and 41 ka cycles which seem also to contribute to the NE monsoonal variability. Following the identification of productivity events related to the NE winter monsoon in the Gulf of Aden, it is possible now to extend this observation to other parts of the Arabian Sea and consider the contribution of this monsoonal system to the productivity fluctuations preserved in the sedimentary records.
Resumo:
Quantitative and qualitative analyses of planktonic foraminiferal assemblages from 134 core-top sediment samples collected along the western Iberian margin were used to assess the latitudinal and longitudinal changes in surface water conditions and to calibrate a Sea Surface Temperature (SST) transfer function for this seasonal coastal upwelling region. Q-mode factor analysis performed on relative abundances yielded three factors that explain 96% of the total variance: factor 1 (50%) is exclusively defined by Globigerina bulloides, the most abundant and widespread species, and reflects the modern seasonal (May to September) coastal upwelling areas; factor 2 (32%) is dominated by Neogloboquadrina pachyderma (dextral) and Globorotalia inflata and seems to be associated with the Portugal Current, the descending branch of the North Atlantic Drift; factor 3 (14%) is defined by the tropical-sub-tropical species Globigerinoides ruber (white), Globigerinoides trilobus trilobus, and G. inflata and mirrors the influence of the winter-time eastern branch of the Azores Current. In conjunction with satellite-derived SST for summer and winter seasons integrated over an 18 year period the regional foraminiferal data set is used to calibrate a SST transfer function using Imbrie & Kipp, MAT and SIMMAX(ndw) techniques. Similar predicted errors (RMSEP), correlation coefficients, and residuals' deviation from SST estimated for both techniques were observed for both seasons. All techniques appear to underestimate SST off the southern Iberia margin, an area mainly occupied by warm waters where upwelling occurs only occasionally, and overestimate SST on the northern part of the west coast of the Iberia margin, where cold waters are present nearly all year round. The comparison of these regional calibrations with former Atlantic and North Atlantic calibrations for two cores, one of which is influenced by upwelling, reveals that the regional one attests more robust paleo-SSTs than for the other approaches.
Resumo:
A series of cores from east of New Zealand have been examined to determine the paleoceanographic history of the late Quaternary in the SW Pacific using planktonic foraminiferal data. Distinct shifts of species can be seen between glacial and interglacial times especially south of Chatham Rise east of South Island. Foraminiferal fragmentation ratios and benthic/planktonic foraminiferal ratios both show increased dissolution during glacials, especially isotope stage 2 to the south of Chatham Rise. The present-day Subtropical Convergence appears to be tied to the Chatham Rise at 44°S, but during glacial times this rise separated cold water to the south from much warmer water to the north, with an associated strong thermal gradient across the rise. We estimate that this gradient could have presented as much as an 8°C temperature change across 4° of latitude during the maximum of the last ice age. There is only weak evidence of the Younger Dryas cool event, but there is a clear climatic optimum between 8 and 6.4 ka with temperatures 1°-2°C higher than the present day. The marine changes compare well with vegetational changes on both South and North Island.
Resumo:
Mineralogical, geochemical, magnetic, and siliciclastic grain-size signatures of 34 surface sediment samples from the Mackenzie-Beaufort Sea Slope and Amundsen Gulf were studied in order to better constrain the redox status, detrital particle provenance, and sediment dynamics in the western Canadian Arctic. Redox-sensitive elements (Mn, Fe, V, Cr, Zn) indicate that modern sedimentary deposition within the Mackenzie-Beaufort Sea Slope and Amundsen Gulf took place under oxic bottom-water conditions, with more turbulent mixing conditions and thus a well-oxygenated water column prevailing within the Amundsen Gulf. The analytical data obtained, combined with multivariate statistical (notably, principal component and fuzzy c-means clustering analyses) and spatial analyses, allowed the division of the study area into four provinces with distinct sedimentary compositions: (1) the Mackenzie Trough-Canadian Beaufort Shelf with high phyllosilicate-Fe oxide-magnetite and Al-K-Ti-Fe-Cr-V-Zn-P contents; (2) Southwestern Banks Island, characterized by high dolomite-K-feldspar and Ca-Mg-LOI contents; (3) the Central Amundsen Gulf, a transitional zone typified by intermediate phyllosilicate-magnetite-K-feldspar-dolomite and Al-K-Ti-Fe-Mn-V-Zn-Sr-Ca-Mg-LOI contents; and (4) mud volcanoes on the Canadian Beaufort Shelf distinguished by poorly sorted coarse-silt with high quartz-plagioclase-authigenic carbonate and Si-Zr contents, as well as high magnetic susceptibility. Our results also confirm that the present-day sedimentary dynamics on the Canadian Beaufort Shelf is mainly controlled by sediment supply from the Mackenzie River. Overall, these insights provide a basis for future studies using mineralogical, geochemical, and magnetic signatures of Canadian Arctic sediments in order to reconstruct past variations in sediment inputs and transport pathways related to late Quaternary climate and oceanographic changes.
Resumo:
The filamentous and diazotrophic cyanobacterium Nodularia spumigena plays a major role in the productivity of the Baltic Sea as it forms extensive blooms regularly. Under phosphorus limiting conditions Nodularia spumigena has a high enzyme affinity for dissolved organic phosphorus (DOP) by production and release of alkaline phosphatase. Additionally, it is able to degrade proteinaceous compounds by expressing the extracellular enzyme leucine aminopeptidase. As atmospheric CO2 concentrations are increasing, we expect marine phytoplankton to experience changes in several environmental parameters including pH, temperature, and nutrient availability. The aim of this study was to investigate the combined effect of CO2-induced changes in seawater carbonate chemistry and of phosphate deficiency on the exudation of organic matter, and its subsequent recycling by extracellular enzymes in a Nodularia spumigena culture. Batch cultures of Nodularia spumigena were grown for 15 days aerated with three different pCO2 levels corresponding to values from glacial periods to future values projected for the year 2100. Extracellular enzyme activities as well as changes in organic and inorganic compound concentrations were monitored. CO2 treatment-related effects were identified for cyanobacterial growth, which in turn was influencing exudation and recycling of organic matter by extracellular enzymes. Biomass production was increased by 56.5% and 90.7% in the medium and high pCO2 treatment, respectively, compared to the low pCO2 treatment and simultaneously increasing exudation. During the growth phase significantly more mucinous substances accumulated in the high pCO2 treatment reaching 363 µg Gum Xanthan eq /l compared to 269 µg Gum Xanthan eq /l in the low pCO2 treatment. However, cell-specific rates did not change. After phosphate depletion, the acquisition of P from DOP by alkaline phosphatase was significantly enhanced. Alkaline phosphatase activities were increased by factor 1.64 and 2.25, respectively, in the medium and high compared to the low pCO2 treatment. In conclusion, our results suggest that Nodularia spumigena can grow faster under elevated pCO2 by enhancing the recycling of organic matter to acquire nutrients.