987 resultados para Thermodynamic


Relevância:

10.00% 10.00%

Publicador:

Resumo:

GaSb layers are grown on GaSb substrates; the effects of input partial pressure of trimethylantimony and the V/III ratio are studied. A model of the MOVPE phase diagram for the growth of GaSb and GaAsxSb1-x is developed which assumes thermodynamic equilibrium to be established at the solid-vapor interface.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The phase diagrams for the MOVPE growth of ZnTe and ZnSeTe have been proposed for the first time, based on the thermodynamic equilibrium established at the solid-vapor interface, The regions for the single condensed phase of ZnTe(s) and of ZnSeTe(s) have been investigated, respectively, Additionally, the growth conditions of appearance for the double condensed phase of ZnTe(s) + Zn(s or l) and ZnTe(s)+ Te(s or l) for the ZnTe system, of ZnSeTe(s) + Zn(s or l) and ZnSeTe(s)+ Te(s or l) for the ZnSeTe system are discussed.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The grain boundary is an interface and the surface tension is one of its important thermodynamic properties. In this paper, the surface tension of the ∑9 grain boundary for α-Fe at various temperatures and pressures is calculated by means of Computer Molecular Dynamics (CMD). The results agree satisfactorily with the experimental data. It is shown that the contribution of entropy to surface tension of grain boundary can be ignored.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A theoretical model about the size-dependent interface energy between two thin films with different materials is developed by considering the chemical bonding contribution based on the thermodynamic expressions and the structure strain contribution based on the mechanical characteristics. The interface energy decreases with reducing thickness of thin films, and is determined by such available thermodynamic and mechanical parameters as the melting entropy, the melting enthalpy, the shear modulus of two materials, etc. The predicted interface energies of some metal/MgO and metal/Al2O3 interfaces based on the model are consistent with the results based on the molecular mechanics calculation. Furthermore, the interface fracture properties of Ag/MgO and Ni/Al2O3 based on the atomistic simulation are further compared with each other. The fracture strength and the toughness of the interface with the smaller structure interface energy are both found to be lower. The intrinsic relations among the interface energy, the interface strength, and the fracture toughness are discussed by introducing the related interface potential and the interface stress. The microscopic interface fracture toughness is found to equal the structure interface energy in nanoscale, and the microscopic fracture strength is proportional to the fracture toughness. (C) 2010 American Institute of Physics. [doi:10.1063/1.3501090]

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The history of Laplace's equations for spherical and cylindrical droplets and the concept of dividing surface in Gibbs' thermodynamic theory of capillary phenomena are briefly reviewed. The existing theories of surface tensions of cylindrical droplets are briefly reviewed too. For cylindrical droplets, a new method to calculate the radius and the surface tension of the surface of tension is given. This method is suitable to be used by molecular dynamics simulations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

对于第一类液滴(尺度远大于界面层的厚度),无论是远离固体壁面的液体球或附着在壁面上的球冠,其内外压力差(简称"附加压力")均适用经典Laplace公式,并且特别对球冠情况给出了一种新的整体性证明.还澄清有关争论:指出[曹治党、郭愚1999物理学报481823]一文对附壁面第一类液体球冠所推导出的附加压力与接触角有关的公式是错误的,而[闵敬春2002物理学报512730]是正确的。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A modeling study is conducted to investigate the effect of hydrogen content in propellants on the plasma flow, heat transfer and energy conversion characteristics of low-power (kW class) arc-heated hydrogen/nitrogen thrusters (arcjets). 1:0 (pure hydrogen), 3:1 (to simulate decomposed ammonia), 2:1 (to simulate decomposed hydrazine) and 0:1 (pure nitrogen) hydrogen/nitrogen mixtures are chosen as the propellants. Both the gas flow region inside the thruster nozzle and the anode-nozzle wall are included in the computational domain in order to better treat the conjugate heat transfer between the gas flow region and the solid wall region. The axial variations of the enthalpy flux, kinetic energy flux, directed kinetic-energy flux, and momentum flux, all normalized to the mass flow rate of the propellant, are used to investigate the energy conversion process inside the thruster nozzle. The modeling results show that the values of the arc voltage, the gas axial-velocity at the thruster exit, and the specific impulse of the arcjet thruster all increase with increasing hydrogen content in the propellant, but the gas temperature at the nitrogen thruster exit is significantly higher than that for other three propellants. The flow, heat transfer, and energy conversion processes taking place in the thruster nozzle have some common features for all the four propellants. The propellant is heated mainly in the near-cathode and constrictor region, accompanied with a rapid increase of the enthalpy flux, and after achieving its maximum value, the enthalpy flux decreases appreciably due to the conversion of gas internal energy into its kinetic energy in the divergent segment of the thruster nozzle. The kinetic energy flux, directed kinetic energy flux and momentum flux also increase at first due to the arc heating and the thermodynamic expansion, assume their maximum inside the nozzle and then decrease gradually as the propellant flows toward the thruster exit. It is found that a large energy loss (31-52%) occurs in the thruster nozzle due to the heat transfer to the nozzle wall and too long nozzle is not necessary. Modeling results for the NASA 1-kW class arcjet thruster with hydrogen or decomposed hydrazine as the propellant are found to compare favorably with available experimental data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study the relation between the thermodynamics and field equations of generalized gravity theories on the dynamical trapping horizon with sphere symmetry. We assume the entropy of a dynamical horizon as the Noether charge associated with the Kodama vector and point out that it satisfies the second law when a Gibbs equation holds. We generalize two kinds of Gibbs equations to Gauss-Bonnet gravity on any trapping horizon. Based on the quasilocal gravitational energy found recently for f(R) gravity and scalar-tensor gravity in some special cases, we also build up the Gibbs equations, where the nonequilibrium entropy production, which is usually invoked to balance the energy conservation, is just absorbed into the modified Wald entropy in the Friedmann-Robertson-Walker spacetime with slowly varying horizon. Moreover, the equilibrium thermodynamic identity remains valid for f(R) gravity in a static spacetime. Our work provides an alternative treatment to reinterpret the nonequilibrium correction and supports the idea that the horizon thermodynamics is universal for generalized gravity theories.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Low temperature heat capacities of N-(p-methylphenyl)-N'-(2-pyridyl)urea were determined by adiabatic calorimetry method in the temperature range from 80 to 370 K. It was found that there was not any heat anomaly in this temperature region. Based on the experimental data, some thermodynamic function results were obtained. Thermal stability and decomposition characteristics analysis of N-(p-methylphenyl)-N'-(2-pyridyl)urea were carried out by DSC and TG. The results indicated that N-(p-methylphenyl)-N'-(2-pyridyl)urea started to melt at ca. 426 K (153degreesC) and the melting peak located at 447.01 K (173.86degreesC). The melting enthalpy was 204.445 kJ mol(-1) (899.6 J g(-1)). The decomposition peak of N-(p-methylphenyl)-N'-(2-pyridyl)urea was found at 499.26 K (226.11degreesC) from DSC curve. This result was similar with that from TG and DTG experiment, in which the mass loss peak was determined as 500.4 K (227.2degreesC).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Molar heat capacities (C-p,C-m) of aspirin were precisely measured with a small sample precision automated adiabatic calorimeter over the temperature range from 78 to 383 K. No phase transition was observed in this temperature region. The polynomial function of Cp, vs. T was established in the light of the low-temperature heat capacity measurements and least square fitting method. The corresponding function is as follows: for 78 Kless than or equal toTless than or equal to383 K, C-p,C-m/J mol(-1) K-1=19.086X(4)+15.951X(3)-5.2548X(2)+90.192X+176.65, [X=(T-230.50/152.5)]. The thermodynamic functions on the base of the reference temperature of 298.15 K, {DeltaH(T)-DeltaH(298.15)} and {S-T-S-298.15}, were derived.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effects of CO2 on the partial oxidation of heptane for hydrogen generation have been studied. Based on the experimental results and thermodynamic equilibrium calculations, the validity of CO2 addition to weaken the hot spots, and the feasibility of the autothermal operation are discussed.