982 resultados para Solid-shell element
Resumo:
Several bioaffinity assays are based on the detection of an analyte which is bound on a solid substrate via biochemical interaction. These so called solid phase assays are based on the adhesion of the primary binding partner on a solid surface, which then binds the analyte to be detected. In this thesis work a novel solid phase based assay technology, known as spot technology, was developed. The spot technology is based on combination of high-capacity solid phases, concentrated in a spot format, utilising modified streptavidin molecules and recombinant antibody fragments. The reduction of the solid phase binding surface to a size of a spot enabled denser binding of the target molecules, providing improved signal intensities and signal-to-background ratio when applied in different solid phase immunoassays. Streptavidin-biotin interactions are commonly utilised in numerous different bioaffinity assays and the ultimate nature of streptavidin to bind biotin is among the strongest non-covalent interaction reported between two biomolecules. In this study native core streptavidin was chemically modified to provide polymerised streptavidin molecules with altered adsorption properties. These streptavidin conjugates, when coated onto polystyrene surface, provided enhanced biotin binding capacity and surface stability when compared to a reference coating constructed with native streptavidin. Furthermore, the combination of chemically modified streptavidin, sitespecifically biotinylated antibody fragments and the spot coating technology provided highly dense solid phase coating with improved binding properties. The performance of the spot assay technology was further demonstrated in different immunoassay configurations. Human thyroid stimulating hormone (TSH) and human cardiac troponin I (cTnI) were used as model analytes to show the applicability of the highly sensitive spot-based solid-phase immunoassay for detection of very low levels of analytes. It was demonstrated that the spot technology provided an assay concept with enhanced sensitivity and short turn-around times, characteristics that are highly suitable for point-of-care applications.
Resumo:
Agricultural wastes from cactus Cereus peruvianus and Opuntia ficus indica were investigated for protein production by solid substrate fermentation. Firstly, the polyelectrolytes were extracted and used in water cleaning as auxiliary of flocculation and coagulation. The remaining fibrous material and peels were used as substrate for fermentation with Aspergillus niger. Glucoamylase and cellulase were the main enzymes produced. Amino acids were determined by HPLC and protein by Lowry's method. After 120 hours of fermentation the protein increased by 12.8%. Aspartic acid (1.27%), threonine (0.97%), glutamic acid (0.88%), valine (0.70%), serine (0.68%), arginine (0.82%), and phenylalanine (0.51%) were the principal amino acids produced.
Resumo:
A rapid, expedient and enantioselective method for the synthesis of beta-hydroxy amines and monosubstituted aziridines in up to 99% e.e., via asymmetric transfer hydrogenation of a-amino ketones and cyclisation through treatment with tosyl chloride and base, is described. (1R,2R)-N-(para-toluenesulfonyl)-1,2-ethylenediamine with formic acid has been utilised as a ligand for the Ruthenium (II) catalysed enantioselective transfer hydrogenation of the ketones.The chiral 2-methyl aziridine, which is a potentially more efficient bonding agent for Rocket Solid Propellant has been successfully achieved.
Resumo:
The aim of this paper is to analyze the effects of intermunicipal cooperation and privatization on the delivery costs of urban solid waste services. The results of our empirical analysis, which we conducted among a sample of very small municipalities, indicate that small towns that cooperate incur lower costs for their waste collection service. Cooperation also raises collection frequency and improves the quality of the service in small towns. By contrast, the form of production, whether it is public or private, does not result in systematic differences in costs. Interestingly, the degree of population dispersion has a significant positive relation with service costs. No evidence of scale economies is found because, it would seem, small municipalities exploit them by means of intermunicipal cooperation.
Resumo:
The Río Negro Formation (late Miocene-early Pliocene) mainly consists of continental deposits, but it contains a middle member of marine origin. It represents a transgressive-regressive sequence that can be seen at several outcrops along the N Patagonian coast. The taphonomical approach to the El Espigón marine deposits permits the identification of four main layers containing different kinds of skeletal accumulation, which mainly consist of oyster shells [Crassostrea patagonica (D'Orbigny, 1842)]. These concentrations display three different morphologies (pouches, pavements and bouquets) with a different taphonomic signature. These deposits were formed in shallow marine environments influenced by wave activity that produced valve concentrations of different entities. They contain several shell beds that represent event, composite, hiatal to lag skeletal concentrations. Traces of bioturbation in the sediment (Thalassinoides, Teichichnus) and bioerosion on the shells (Entobia, Gastrochaeonolites, Caulostrepsis), and encrusters (cirripeds, bryozoans), are also abundant in the outcrop and consititue common components of these Miocene materials. Layers 1 and 2 of the sequence were deposited in shoreface/foreshore environments at the beginning of a highstand systems tract, while layers 3 and 4 were deposited at the end, or at the beginning of a forced regression, in foreshore environments. A final erosional episode cut the top of the layer 4, which truncated the abundant bioturbaation developed there.
Resumo:
This paper presents a new numerical program able to model syntectonic sedimentation. The new model combines a discrete element model of the tectonic deformation of a sedimentary cover and a process-based model of sedimentation in a single framework. The integration of these two methods allows us to include the simulation of both sedimentation and deformation processes in a single and more effective model. The paper describes briefly the antecedents of the program, Simsafadim-Clastic and a discrete element model, in order to introduce the methodology used to merge both programs to create the new code. To illustrate the operation and application of the program, analysis of the evolution of syntectonic geometries in an extensional environment and also associated with thrust fault propagation is undertaken. Using the new code, much more complex and realistic depositional structures can be simulated together with a more complex analysis of the evolution of the deformation within the sedimentary cover, which is seen to be affected by the presence of the new syntectonic sediments.
Resumo:
A solid phase extraction procedure using Amberlite XAD-1180/Pyrocatechol violet (PV) chelating resin for the determination of iron and lead ions in various environmental samples was established. The procedure is based on the sorption of lead(II) and iron(III) ions onto the resin at pH 9, followed by elution with 1 mol/L HNO3 and determination by flame atomic absorption spectrometry. The influence of alkaline, earth alkaline and some transition metals, as interferents, are discussed. The recoveries for the spiked analytes were greater than 95%. The detection limits for lead and iron by FAAS were 0.37 µg/L and 0.20 µg/L, respectively. Validation of the method described here was performed by using three certified reference materials (SRM 1515 Apple Leaves, SRM 2711 Montana Soil and NRCC-SLRS-4 Riverine Water). The procedure was successfully applied to natural waters and human hair.
Resumo:
A cohesive element for shell analysis is presented. The element can be used to simulate the initiation and growth of delaminations between stacked, non-coincident layers of shell elements. The procedure to construct the element accounts for the thickness offset by applying the kinematic relations of shell deformation to transform the stiffness and internal force of a zero-thickness cohesive element such that interfacial continuity between the layers is enforced. The procedure is demonstrated by simulating the response and failure of the Mixed Mode Bending test and a skin-stiffener debond specimen. In addition, it is shown that stacks of shell elements can be used to create effective models to predict the inplane and delamination failure modes of thick components. The results indicate that simple shell models can retain many of the necessary predictive attributes of much more complex 3D models while providing the computational efficiency that is necessary for design
Resumo:
Solid-state MBz compounds, where M stands for bivalent Mn, Fe, Co, Ni, Cu and Zn and Bz is benzoate, have been synthesized. Simultaneous thermogravimetry and differential thermal analysis (TG-DTA), differential scanning calorimetry (DSC), infrared spectroscopy and complexometry were used to characterize and to study the thermal behaviour of these compounds. The procedure used in the preparation of the compounds via reaction of basic carbonates with benzoic acid is not efficient in eliminating excess acid. However the TG-DTA curves permitted to verify that the binary compounds can be obtained by thermosynthesis, because the benzoic acid can be eliminated before the thermal decomposition of these compounds. The results led to information about the composition, dehydration, thermal stability, thermal decomposition and structure of the isolated compounds. On heating, these compounds decompose in two (Mn, Co, Ni, Zn) or three (Fe, Cu) steps with formation of the respective oxide (Mn3O4, Fe2O3, Co3O4, NiO, CuO and ZnO) as final residue. The theoretical and experimental spectroscopic studies suggest a covalent bidentate bond between ligand and metallic center.
Resumo:
Nowadays it is necessary to research other types of energy alternatives and find the way to supply and save the energy we waste. The aim of the project consist of programming a microprocessor to measure if an oven radiates heat to the exterior, for the measure It is used a Peltier element that generates a voltage depending of the temperature difference between the oven and the air of the place where the oven is situated; The energy generated by the oven will be recollected in a condensor. A sensor will be used to know the exact measure. The second part of the project the main propose, is the development of a harvester. The microprocessor will use the voltage produced by the Peltier element to supply the electricity that it needs to work. A low power circuit and the appropriate software are needed to save the voltage generated.
Resumo:
This is a review of direct analysis using solid sampling graphite furnace atomic absorption spectrometry. Greater emphasis is dedicated to sample preparation, sample homogeneity, calibration and its application to microanalysis and micro-homogeneity studies. The main advantages and some difficulties related to the applicability of this technique are discussed. A literature search on the application of solid sampling graphite furnace atomic absorption spectrometry in trace element determination in many kinds of samples, including biological, clinical, technological and environmental ones, is also presented.
Resumo:
A liquid chromatography-tandem mass spectrometry method with atmospheric pressure chemical ionization (LC-APCI/MS/MS) was validated for the determination of etoricoxib in human plasma using antipyrin as internal standard, followed by on-line solid-phase extraction. The method was performed on a Luna C18 column and the mobile phase consisted of acetonitrile:water (95:5, v/v)/ammonium acetate (pH 4.0; 10 mM), run at a flow rate of 0.6 mL/min. The method was linear in the range of 1-5000 ng/mL (r²>0.99). The lower limit of quantitation was 1 ng/mL. The recoveries were within 93.72-96.18%. Moreover, method validation demonstrated acceptable results for the precision, accuracy and stability studies.
Resumo:
Genistein:β-cyclodextrin complexes with high drug loading (19.22%) were prepared by freeze-drying and characterized by differential scanning calorimetry and hydrogen nuclear magnetic resonance spectroscopy. The spatial configuration of the complex was proposed by means of 2D-NOESY experiment combined with molecular modeling. According to the results obtained, the interaction of genistein with β -cyclodextrin in a 1:1 complex is supposed to occur mainly through the insertion of the guest A-ring in cyclodextrin cavity, without rule out the possibility of inclusion through the B-ring, as previously reported in the literature.
Resumo:
In this work we report the synthesis of sulfonamide derivatives using a conventional procedure and with solid supports, such as silica gel, florisil, alumina, 4Å molecular sieves, montmorillonite KSF, and montmorillonite K10 using solvent-free and microwave-assisted methods. Our results show that solid supports have a catalytic activity in the formation of sulfonamide derivatives. We found that florisil, montmorillonite KSF, and K10 could be used as inexpensive alternative catalysts that are easily separated from the reaction media. Additionally, solvent-free and microwave-assisted methods were more efficient in reducing reaction time and in increasing yield.