969 resultados para Semiconductor quantum dots
Resumo:
Les nanoparticules (NPs) sont définies comme des particules ayant au moins une dimension comprise entre 1 à 100 nanomètres. Plusieurs études in vitro et in vivo indiquent que les NPs pourraient constituer un risque potentiel pour la santé des personnes les synthétisant ou les manipulant lors de leur incorporation dans d’autres matériaux. La nanotoxicologie est un domaine de recherche émergeant. Les propriétés physico-chimiques particulières des NPs sont responsables d’interférences non spécifiques entre les nanomatériaux et certains des composants des essais in vitro pouvant mener à de faux résultats. L’inhalation a été identifiée comme une voie d’exposition présentant un risque important de toxicité. Dans le cadre de ce projet, nous avons utilisé la lignée de cellules épithéliales alvéolaires humaines, A549. Nous avons étudié chez cette lignée les conséquences de l’exposition aux points quantiques (PQs), NPs d’intérêt pour leurs applications potentielles en médecine (nanovecteur ou nanosonde). La mise au point des conditions expérimentales (interférence entre l’essai LDH et le milieu de culture) a permis de valider les essais de cytotoxicité MTS et LDH en présence des PQs. Nous avons montré que les PQs présentaient une cytotoxicité à court et long terme, et nous avons par la suite étudié un des mécanismes de toxicité potentielle, la mesure du cadmium (Cd2+) libéré des PQs. Nous avons déterminé que la mesure du Cd2+ comportait plusieurs interférences qui invalident cet essai. En conclusion, notre étude a permis d’identifier des interférences qui remettent en question plusieurs conclusions d’études publiées qui n’ont pas vérifié l’existence de telles interférences.
Resumo:
Over the past few years, a little word with big potential has been rapidly entering into the world's consciousness-'nano'. Nanoscience and technology is a multidisciplinary field, involving the fabrication and understanding of matter at the finest level of a few nanomters.This thesis is about the synthesis and laser induced studies of nanosized ZnO,a versatile material with a wide range of applications.After synthesizing colloids and films of nano ZnO,the samples are studied using different optical methods.Interactions of intense laser beams with nanosized particles are found to open up many interesting scenarios with possible applications in the field of photonics.
Resumo:
There is an enormous demand for chemical sensors in many areas and disciplines including chemistry, biology, clinical analysis, environmental science. Chemical sensing refers to the continuous monitoring of the presence of chemical species and is a rapidly developing field of science and technology. They are analytical devices which transform chemical information generating from a reaction of the analyte into an measurable signal. Due to their high selectivity, sensitivity, fast response and low cost, electrochemical and fluorescent sensors have attracted great interest among the researchers in various fields. Development of four electrochemical sensors and three fluorescent sensors for food additives and neurotransmitters are presented in the thesis. Based on the excellent properties of multi walled carbon nanotube (MWCNT), poly (L-cysteine) and gold nanoparticles (AuNP) four voltammetric sensors were developed for various food additives like propyl gallate, allura red and sunset yellow. Nanosized fluorescent probes including gold nanoclusters (AuNCs) and CdS quantum dots (QDs) were used for the fluorescent sensing of butylated hydroxyanisole, dopamine and norepinephrine. A total of seven sensors including four electrochemical sensors and three fluorescence sensors have been developed for food additives and neurotransmitters.
Resumo:
We have investigated the magnetic-field asymmetry of the conductance in the nonlinear regime in a small Aharonov-Bohm ring. We have found that the odd-in B and linear in V (the DC bias) correlation function of the differential conductance exhibits periodical oscillations with the Aharonov-Bohm flux. We have deduced the electron interaction constant and analyzed the phase rigidity of the Aharonov-Bohm oscillations in the nonlinear regime. Copyright (C) EPLA, 2009
Resumo:
The evidence of successful growth of Mn-doped PbS (Pb(1-x)Mn(x)S) nanocrystals (NCs) in SiO(2)-Na(2)CO(3)-Al(2)O(3)-PbO(2)-B(2)O(3) template, using the fusion method, is reported on in this study. The as-grown Pb(1-x)Mn(x)S NC is characterized using optical absorption, electron paramagnetic resonance, and atomic force microscopy. The data are discussed in terms of two distinct scenarios, namely a core-doped and a shell-doped nanostructure. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
We study the properties of the lower bound on the exchange-correlation energy in two dimensions. First we review the derivation of the bound and show how it can be written in a simple density-functional form. This form allows an explicit determination of the prefactor of the bound and testing its tightness. Next we focus on finite two-dimensional systems and examine how their distance from the bound depends on the system geometry. The results for the high-density limit suggest that a finite system that comes as close as possible to the ultimate bound on the exchange-correlation energy has circular geometry and a weak confining potential with a negative curvature. (c) 2009 Elsevier B.V. All rights reserved.
Resumo:
We show that the conductance of a quantum wire side-coupled to a quantum dot, with a gate potential favoring the formation of a dot magnetic moment, is a universal function of the temperature. Universality prevails even if the currents through the dot and the wire interfere. We apply this result to the experimental data of Sato et al. (Phys. Rev. Lett., 95 (2005) 066801). Copyright (C) EPLA, 2009
Resumo:
The physical properties and the excitations spectrum in oxides and semiconductors materials are presented in this work, whose the first part presents a study on the confinement of optical phonons in artificial systems based on III-V nitrides, grown in periodic and quasiperiodic forms. The second part of this work describes the Ab initio calculations which were carried out to obtain the optoeletronic properties of Calcium Oxide (CaO) and Calcium Carbonate (CaCO3) crystals. For periodic and quasi-periodic superlattices, we present some dynamical properties related to confined optical phonons (bulk and surface), obtained through simple theories, such as the dielectric continuous model, and using techniques such as the transfer-matrix method. The localization character of confined optical phonon modes, the magnitude of the bands in the spectrum and the power laws of these structures are presented as functions of the generation number of sequence. The ab initio calculations have been carried out using the CASTEP software (Cambridge Total Sequential Energy Package), and they were based on ultrasoft-like pseudopotentials and Density Functional Theory (DFT). Two di®erent geometry optimizations have been e®ectuated for CaO crystals and CaCO3 polymorphs, according to LDA (local density approximation) and GGA (generalized gradient approximation) approaches, determining several properties, e. g. lattice parameters, bond length, electrons density, energy band structures, electrons density of states, e®ective masses and optical properties, such as dielectric constant, absorption, re°ectivity, conductivity and refractive index. Those results were employed to investigate the confinement of excitons in spherical Si@CaCO3 and CaCO3@SiO2 quantum dots and in calcium carbonate nanoparticles, and were also employed in investigations of the photoluminescence spectra of CaCO3 crystal
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coherent properties and Rabi oscillations in two-level donor systems, under terahertz excitation, are theoretically investigated. Here we are concerned with donor states in bulk GaAs and GaAs-(Ga,Al)As quantum dots. We study confinement effects, in the presence of an applied magnetic field, on the electronic and on-center donor states in GaAs- (Ga,Al)As dots, as compared to the situation in bulk GaAs, and estimate some of the associated decay rate parameters. Using the optical Bloch equations with damping, we study the time evolution of the Is and 2p(+) states in the presence of an applied magnetic field and of a terahertz laser. We also discuss the role played by the distinct dephasing rates on the photocurrent and calculate the electric dipole transition moment. Results indicate that the Rabi oscillations are more robust as the total dephasing rate diminishes, corresponding to a favorable coherence time.
Resumo:
Despite recent advances, patients with malignant brain tumors still have a poor prognosis. Glioblastoma (WHO grade 4 astrocytoma), the most malignant brain tumor, represents 50% of all astrocytomas, with a median survival rate of <1 year. It is, therefore, extremely important to search for new diagnostic and therapeutic approaches for patients with glioblastoma. This study describes the application of superparamagnetic nano-particles of iron oxide, as well as monoclonal antibodies, of immunophenotypic significance, conjoined to quantum dots for the ultrastructural assessment of glioblastoma cells. For this proposal, an immunophenotypic study by flow cytometry was carried out, followed by transmission electron microscopy analysis. The process of tumor cell labeling using nanoparticles can successfully contribute to the identification of tumorigenic cells and consequently for better understanding of glioblastoma genesis and recurrence. In addition, this method may help further studies in tumor imaging, diagnosis, and prognostic markers detection.
Resumo:
Time-resolved X-ray absorption-fine structure (Quick-XAFS) and UV-Vis absorption spectroscopies were combined for monitoring simultaneously the time evolution of Zn-based species and ZnO quantum dot (Qdot) formation and growth during the sol-gel synthesis from zinc oxy-acetate precursor solution. The time evolution of the nanostructural features of colloidal suspension was independently monitored in situ by small angle X-ray scattering (SAXS). In both cases, the monitoring was initialized just after the addition of NaOH solution (B = [OH]/[Zn] = 0.5) to the precursor solution at 40 degrees C. Combined time-resolved Quick-XAFS and UV-Vis data showed that the formation of ZnO colloids from the zinc oxy-acetate consumption achieves a quasi-steady-state chemical equilibrium in less than 200s. Afterwards, the comparison of the ZnO Qdots size and Guinier gyration radius evidences a limited aggregation process coupled to the Qdots growth. The analysis of the experimental results demonstrates that the nanocrystal coalescence and Ostwald ripening control the kinetics of the Qdot growth.
Resumo:
We theoretically study many-body excitations in three different quasi-one-dimensional (Q1D) electron systems: (i) those formed on the surface of liquid Helium; (ii) in two coupled semiconductor quantum wires; and (iii) Q1D electrons embedded in polar semiconductor-based quantum wires. Our results show intersubband coupling between higher subbands and the two lowest subbands affecting even the lower energy intersubband plasmons on the liquid Helium surface. Concerning the second system, we show a pronounced extra peak appearing in the intersubband impurity spectral function for temperatures as high as 20 K. We finally show coupled intersubband plasmon-phonon modes surviving for temperatures up to 300 K.
Resumo:
The simultaneous formation of nanometer sized zinc oxide (ZnO), and acetate zinc hydroxide double salt (Zn-HDS) is described. These phases, obtained using the sol-gel synthesis route based on zinc acetate salt in alcoholic media, were identified by direct characterization of the reaction products in solution using complementary techniques: nephelometry, in situ Small-Angle X-ray Scattering (SAXS), UV-Vis spectroscopy and Extended X-ray Absorption Fine Structures (EXAFS). In particular, the hydrolytic pathway of ethanolic zinc acetate precursor solutions promoted by addition of water with the molar ratio N = [H2O]/[Zn2+] = 0.05 was investigated in this paper. The aim was to understand the formation mechanism of ZnO colloidal suspension and to reveal the factors responsible for the formation of Zn-HDS in the final precipitates. The growth mechanism of ZnO nanoparticles is based on primary particle (radius approximate to 1.5 nm) rotation inside the primary aggregate (radius < 3.5 nm) giving rise to an epitaxial attachment of particles and then subsequent coalescence. The growth of second ZnO aggregates is not associated with the Otswald ripening, and could be associated with changes in equilibrium between solute species induced by the superficial etching of Zn-HDS particles at the advanced stage of kinetic.
Resumo:
Phase separation suppression due to external biaxial strain is observed in InxGa1-xN alloy layers by Raman scattering spectroscopy. The effect is taking place in thin epitaxial layers pseudomorphically grown by molecular-beam epitaxy on unstrained GaN(001) buffers. Ab initio calculations carried out for the alloy free energy predict and Raman measurements confirm that biaxial strain suppress the formation of phase-separated In-rich quantum dots in the InxGa1-xN layers. Since quantum dots are effective radiative recombination centers in InGaN, we conclude that strain quenches an important channel of light emission in optoelectronic devices based on pseudobinary group-III nitride semiconductors. (C) 2002 American Institute of Physics.