998 resultados para SHARP-LINE PHOTOLUMINESCENCE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We analyze low-temperature Raman and photoluminescence spectra of MBE-grown GaN layers on sapphire. Strong and sharp Raman peaks are observed in the low frequency region. These peaks, which are enhanced by excitation in resonance with yellow luminescence transitions, are attributed to electronic transitions related to shallow donor levels in hexagonal GaN. It is proposed that a low frequency Raman peak at 11.7 meV is caused by a pseudo-local vibration mode related to defects involved in yellow luminescence transitions. The dependence of the photoluminescence spectra on temperature gives additional information about the residual impurities in these GaN layers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Photoluminescence from gas-evaporated Ge nanoclusters consisting of a crystalline core encased in an oxide shell are presented. An as-grown sample shows room temperature luminescence with separate peaks around 357 and 580 nm. Prolonged air exposure of the clusters reduces the Ge core dimensions, and the emission initially at 580 nm shifts to 420 nm; however, the violet luminescence at 357 nm displays no difference. These results indicate that there are two mechanisms involved with light emission from Ge nanoclusters, visible light emission associated with the quantum confinement effect, and violet light emission correlated to luminescent centers. (C) 1998 Elsevier Science B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fourier transform photoluminescence measurements were carried out to investigate the optical transitions in InxGa1-xAs/InyAl1-yAs one-side-modulation-doped asymmetric step quantum wells. Samples with electron density n(s) between 0.8 and 5.3 x 10(12) cm(-2) rue studied. Strong recombination involving one to three populated electron subbands with the first heavy-hole subband is observed. Fermi edge singularity (FES) clearly can be observed for some samples. The electron subband energies in the InGaAs/InAlAs step quantum wells were calculated by a self-consistent method, taking into account strain and nonparabolicity effects and the comparison with the experimental data shows a good agreement. Our results can help improve understanding for the application of InGaAs/InAlAs step quantum wells in microelectronic and optoelectronic devices. (C) 1998 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have investigated the Raman scattering and the photoluminescence (PL) of ZnSxTe1-x mixed crystals grown by MBE, covering the entire composition range (0 less than or equal to x < 1). The results of Raman studies show that the ZnSxTe1-x mixed crystals display two-mode behaviour. In addition, photoluminescence spectra obtained in backscattering and edge-emission geometries, reflectivity spectra and the: temperature dependence of the photoluminescence of ZnSxTe1-x have been employed to find out the origin of PL emissions in ZnSxTe1-x with different x values. The results indicate that emission bands, for the samples with small x values, can be related to the band gap transitions or a shallow-level emission centre, while as x approaches 1, they are designated to strong radiative recombination of Te isoelectronic centres (IECs).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have examined photoluminescence (PL), IR absorption and Raman spectra of a series of hydrogenated amorphous silicon oxide (a-SiOx:H, (0 < x < 2)) films fabricated by plasma enhanced chemical vapor deposition (PECVD). Two strong luminescence bands were observed at room temperature, one is a broad envelope comprising a main peak around 670 nm and a shoulder at 835 nm, and the other, peaked around 850 nm; is found only after being annealed up to 1170 degrees C in N-2 environment. In conjunction with IR and Raman spectra, the origins of the two luminescent bands and their annealing behaviors are discussed on the basis of quantum confinement effects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We studied the dependence of photoluminescence induced by carbon contamination on the Ge/GeSi structure. It is found that a carbon and silicon defect complex may be formed in a special structure by opening the in situ high-energy electron diffraction test during growth. There is an important difference in the dependence of photoluminescence on the temperature between the defect complex in our samples and in bulk Si. where the impurity-active center is generated by high-energy electron (about several MeV) irradiation. The quenching temperature of the photoluminescence from the impurity-active center is higher in our Ge/GeSi structure than in bulk Si. The defect complex may serve as an impurity-active center for a possible application in making Si-based light-emitting diodes whose wavelength is around 1.3 mu m in the window of optical communication. (C) 1998 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Si-rich SiO2 films were deposited by plasma-enhanced chemical vapor deposition on the silicon substrates, and then implanted with 1 x 10(15) cm(-2) 400 keV Er ions. After annealing at 800 degrees C for 5 min the samples show room temperature luminescence around 1.54 mu m, characteristic of intra-4f emission from Er3+, upon excitation using an Ar ion laser.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Visible photoluminescence (PL) and Raman spectra of Ge clusters embedded in porous silicon (PS) have been studied. The as-prepared sample shows redshifted and enhanced room temperature PL relative to reference PS. This result can be explained by the quantum confinement effect on excitons in Ge clusters and tunnel of excitons from Si units of the PS skeleton to Ge clusters. One year storage in dry air results in a pronounced decrease in PL intensity but blue-shifted in contrast to reference PS. This phenomenon correlates to the size decrease of macerated Ce clusters and occurrence of "quantum depletion" in Ge clusters. Consequently, only excitons in Si units contribute to PL. (C) 1998 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of interdot electronic coupling on photoluminescence (PL) spectra of self-assembled InAs/GaAs quantum dots (QDs) has been systematically investigated combining with the measurement of transmission electron microscopy. The experimentally observed fast red-shift of PL energy and an anomalous reduction of the linewidth with increasing temperature indicate that the QD ensemble can be regarded as a coupled system. The study of multilayer vertically coupled QD structures shows that a red-shift of PL peak energy and a reduction of PL linewidth are expected as the number of QD layers is increased. On the other hand, two layer QDs with different sizes have been grown according to the mechanism of a vertically correlated arrangement. However, only one PL peak related to the large QD ensemble has been observed due to the strong coupling in InAs pairs. A new possible mechanism to reduce the PL linewidth of QD ensemble is also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The photoluminescence of porous silicon can be modified sensitively by surface adsorption of different kinds of molecules. A quite different effects of 9-cyanoanthracene and anthracene adsorption on the photoluminescence of porous silicon were observed. The adsorption of 9-cyanoanthracene induced the photoluminescence enhancement, while anthracene adsorption resulted in photoluminescent quenching. An explanation of the interaction of adsorbates with surface defect sites of porous silicon was suggested and discussed. (C) 1998 Elsevier Science S.A.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Atomic force microscopy and photoluminescence spectroscopy (PL) has been used to study asymmetric bilayer InAs quantum dot (QD) structures grow by molecular-beam epitaxy on GaAs (001) substrates. The two InAs layers were separated by a 7-nm-thick GaAs spacer layer and were grown at different substrate temperature. We took advantage of the intrinsic nonuniformity of the molecular beams to grow the seed layer with an average InAs coverage of 2.0 ML. Then the seed layer thickness could be divided into three areas: below, around and above the critical thickness of the 2D-3D transition along the 11101 direction of the substrate. Correspondingly, the nucleation mechanisms of the upper InAs layer (UIL) could be also divided into three areas: temperature-controlled, competition between temperature-controlled and strain-induced, and strain-induced (template-controlled) nucleation. Small quantum dots (QDs) with a large density around 5 x 10(10) cm(-2) are found in the temperature-controlled nucleation area. The QD size distributions undergo a bimodal to a unimodal transition with decreasing QD densities in the strain-induced nucleation area, where the QD densities vary following that of the seed layer (templating effect). The optimum QD density with the UIL thickness fixed at 2.4 ML is shown to be around 1.5 x 10(10) cm(-2), for which the QD size distribution is unimodal and PL emission peaks at the longest wavelength. The QDs in the in-between area exhibit a broad size distribution with small QDs and strain-induced large QDs coexisting.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thick GaN films were grown on sapphire in a home-made vertical HVPE reactor. Effect of nucleation treatments on the properties of GaN films was investigated, including the nitridation of sapphire, low temperature GaN buffer and MOCVD-template. Various material characterization techniques, including AFM, SEM, XRD, CL and PL have been used to assess these GaN epitaxial films. It was found that the surface of sapphire after high temperature nitridation was flat and showed high density nucleation centers. In addition, smooth Ga-polarity surface of epitaxial layer can be obtained on the nitridation sapphire placed in air for several days due to polarity inversion. This may be caused by the atoms re-arrangement because of oxidation. The roughness of N-polarity film was caused by the huge inverted taper domains, which can penetrate up to the surface. The low temperature GaN buffer gown at 650 degrees C is favorable for subsequent epitaxial film, which had narrow FWHM of 307 arcsec. The epitaxial growth on MOCVD-template directly came into quasi-2D growth mode due to enough nucleation centers, and high quality GaN films were acquired with the values of the FWHM of 141 arcsec for (002) reflections. After etching in boiled KOH, that the total etch-pit density was only 5 x 106 cm(-2) illustrated high quality of the thick film on template. The photoluminescence spectrum of GaN film on the MOCVD-template showed the narrowest line-width of the band edge emission in comparison with other two growth modes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present fabrication and experimental measurement of a series of photonic crystal waveguides and coupled structure of PC waveguide and PC micro-cavity. The complete devices consist of an injector taper down from 3 mu m into a triangular-lattice air-holes single-line-defect waveguide. We fabricated these devices on a silicon-on-insulator substrate and characterized them using tunable laser source. We've obtained high-efficiency light propagation and broad flat spectrum response of photonic-crystal waveguides. A sharp attenuation at photonic crystal waveguide mode edge was observed for most structures. The edge of guided band is shifted about 31 nm with the 10 nm increase of lattice constant. Mode resonance was observed in coupled structure. Our experimental results indicate that the optical spectra of photonic crystal are very sensitive to structure parameters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The guide mode whose frequency locates in the band edge in photonic crystal single line defect waveguide has very low group velocity. So the confinement and gain of electromagnetic field in the band edge are strongly enhanced. Photonic crystal waveguide laser is fabricated and the slow light phenomenon is investigated. The laser is pumped by pulsed pumping light at 980nm whose duty ratio is 0.05%. The active layer in photonic crystal slab is InGaAsP multiple quantum well. Light is transimited by a photonic crystal chirp waveguide in one facet of the laser. Then the output light is coupled to a fiber and the character of laser is analysis by an optical spectrometer. It is found that single mode and multimode happens with different power of pumping light. Meanwhile the plane wave expansion and finite-difference time-domain methods are used to simulate the phenomenon of slow light. And the result of the experiment is compared with the theory which proves the slow light results in lasing oscillation.