981 resultados para Representative Core Samples
Resumo:
Visual counts of ice-rafted debris (IRD), foraminifera, and radiolaria were made for ~1500 samples in Site 1094 spanning the last four climatic cycles (marine isotope stages 1-11). Most, but not all, of the IRD variability is captured by whole-core physical properties including magnetic susceptibility and Q-ray attenuation bulk density. Glacial periods are marked by high IRD abundance and millennial-scale variability, which may reflect instability of ice shelves in the Weddell Sea region. Each interglacial period exhibits low IRD and high foraminiferal abundance during the early part of the interglacial, indicating relatively warm sea-surface temperatures and reduced influence of sea ice. IRD increases and foraminiferal abundances decrease during the latter part of each interglacial, indicating a return to more glacial-like conditions. Glacial terminations I and V are each characterized by a step-wise reduction in ice-rafting punctuated by a brief pulse in IRD delivery and reversal in delta18O. The coarse fraction of the sediment is dominated by ash and radiolaria, and the relative abundance of these components is remarkably similar to the concentration of Na+ in Vostok. Each of these variables is believed to be controlled mainly by sea-ice cover, thereby providing a means for sediment-ice core correlation.
Resumo:
Radiocarbon age relationships between co-occurring planktic foraminifera, alkenones, and total organic carbon in sediments from the continental margins of southern Chile, northwest Africa, and the South China Sea were compared with published results from the Namibian margin. Age relationships between the sediment components are site-specific and relatively constant over time. Similar to the Namibian slope, where alkenones have been reported to be 1000-4500 years older than co-occurring foraminifera, alkenones were significantly (~1000 years) older than co-occurring foraminifera in the Chilean margin sediments. In contrast, alkenones and foraminifera were of similar age (within 2 sigma error or better) in the NW African and South China Sea sediments. Total organic matter and alkenone ages were similar off Namibia (age difference TOC alkenones: 200-700 years), Chile (100-450 years), and NW Africa (360-770 years), suggesting minor contributions of preaged terrigenous material. In the South China Sea, total organic carbon is significantly (2000-3000 years) older owing to greater inputs of preaged terrigenous material. Age offsets between alkenones and planktic foraminifera are attributed to lateral advection of organic matter. Physical characteristics of the depositional setting, such as seafloor morphology, shelf width, and sediment composition, may control the age of co-occurring sediment components. In particular, offsets between alkenones and foraminifera appear to be greatest in deposition centers in morphologic depressions. Aging of organic matter is promoted by transport. Age offsets are correlated with organic richness, suggesting that formation of organic aggregates is a key process.
Resumo:
Nineteen samples of the Cape Roberts-1 drillcore were taken from Miocene- age deposits, from 90.25 - 146.50 metres below seafloor (mbsf) for thin section and laser grain-size analysis. Using the grain-size distribution, detailed core logging, X-radiography and thin-section analysis of microstructures, coupled with a statistical grouping of the grain-size data, three main styles of gravity-flow sedimentation were revealed. Thin (centimetre-scale) muddy debris-flow deposits are the most common and are possibly tirggered by debris rain-out from sea-ice These deposits are characterised by very poorly sorted, faintly laminated muddy sandstones with coarse granules toward their base. Contacts are gradational to sharp. Variations on this style of mass-wasting deposit are rhythmically stacked sequences of pebbly-coarse sandstones representing successive thin debris-flow events. These suggest very high sedimentation rates on an unstable slope in a shallow-water proximal glacimarine environment. Sandy-silty turbidites appear more common in the lower sections of the core, below approximately 141.00 mbsf, although they occur occasionally with the debris flow deposits The turbidites are characterised by inversely to normally graded, well-laminated siltstones with occasional lonestones, and represent a more distal shallow-water glacimarine environment.
Resumo:
A diverse assemblage of marine palynomorphs was recovered from the Oligocene - Miocene section of CRP-2/2A. Most of the assemblage is composed of previously unrecognised species. Three distinct groups of marine palynomorph were recognised: (1) prasinophytes, mainly Cymatiosphaera, (2) acritarchs, mainly Leiosphaeridia and Sigmopollis although Leiofusa is an important component of the bottom half of the hole, and (3) dinoflagellate cysts. About 27 species of in situ dinoflagellate cysts were recorded, of which seven apparently undescribed species of Lejeunecysta form a prominent component. Reworked specimens of several species of the Paleogene Transantarctic Flora occur in CRP-2/2A sediments. Several abundance peaks of reworked taxa from the Transantarctic Flora are recorded. Three marine palynomorph zones were recognised (MP3, MP2, MP1), considered to be early Oligocene, late Oligocene, and late Oligocene/early Miocene in age respectively. Samples from the Quaternary and Pliocene part of CRP-2/2A were also examined. These proved either barren or yielded very sparse low diversity floras.
Resumo:
The clay mineralogical composition of a 552 cm long sediment core from Lake Terrasovoje in Amery Oasis, East Antarctica, was analysed and compared with that in surface sediments from other locations in the vicinity. The lower part of the sediment core is formed by sub- and proglacial sediments with a dominance of smectite and illite, and lower amounts of kaolinite and chlorite. The upper part of the core is deposited after 12 500 cal yr bp and mainly composed of illite and kaolinite, with low amounts of smectite and chlorite, such as found in samples from rock outcrops and covering sediments throughout Amery Oasis. The clay composition in the lower section of core Lz1005 suggest that the basin of Lake Terrasovoje was filled by a 150-200 m thickened Nemesis Glacier prior to 12 500 cal yr bp rather than by local ice caps.
Resumo:
Petrographical and mineral chemistry data are described for the mist representative basement lithologies occurring as clasts (pebble grain-size class) from the CRP-1 drillhole. Most pebbles consits of either undeformed or foliated biotite with or without hornblende monzogranites. Other rock types include biotite with or without garnet syenogranitr, biotite-hornblende granodiorite, tonalite, monzogranitic porphyries, haplogranite, quartz-monzonite (restricted to the Quaternary section), Ca-silicate rocks and biotite amphibolite (restricted to the Miocene strata). The common and ubiquitous occurence of biotite with or without hornblende monzogranite pebbles, in both the Quaternary and Miocene sections, apparently mirrors the dominance of these rock types in the granitoid assemblages which are presently exposed in the upper Precambrian-lower Paleozoic basement of the south Victoria Land. The other CRP-1 pebble lithologies show petrographical features which consitently support a dominant supply from areas of the Transantarctic Mountains located to the west and south-west of the CRP-1 site, and they thus furthercorroborate a model of local provenance for the supply of basement clasts to the CRP-1 sedimentary strata.
Resumo:
Determinations of total carbonate content yield additional information, in the context of integrated investigations, thus enabling or enhancing the interpretation and characterisation of the depositional environment, the processes of sedimentation and the diagenesis of sediments. In the case of drillcores, they help us to discern vertical gradations of facies sequences that have repeating patterns or show changes through time. This report presents initial results of carbonate investigations on a total of 32 bulk samples from the Quaternary and Miocene strata of the CRP-1 borehole, which reached a final depth of 147.69 metres below sea floor (mbsf). Fifteen out of a total of 18 lithostratigraphic units in the core were sampled (Tab. 1). Fourteen samples (24.85-43.85 mbsf) belong to the Quaternary, whereas 18 samples (44.53-146.51 mbsf) originate from the Miocene strata. The sampling intervals varied from 1-5 m for the Quaternary, and 1-15 m for the Miocene. All the samples originated from sections of core representing not more than 1 cm thickness.
Resumo:
Marine diatoms are the primary biostratigraphical and paleoenvironmental tool for interpreting the upper Palaeogene and lower Neogene strata recovered during the second drilling season of the Cape Roberts Project at site CRP-2 in the western Ross Sea, Antarctica. Silicoflagellates, ebridians, and a chrysophyte cyst provide supporting biostratigraphical information. More than 100 dominantly planktic diatom taxa are recognised. Of these, more than 30 are treated informally, pending SEM examination and formal description. Many other taxa are noted only to generic level. Lower Oligocene (c. 31 Ma) through lower Miocene (c. 18.5 Ma) diatoms occur from 28 mbsf down to 565 mbsf. Below this level, to the bottom of the hole at 624.15 mbsf, diatom assemblages are poorly-preserved and many samples are barren. A biostratigraphic zonal framework, consisting of ten diatom zones, is proposed for the Antarctic continental shelf. Ages inferred from the diatom biostratigraphy correspond well with geochronological data from argon dating of volcanic materials and strontium dating of calcareous macrofossils, as well as nannofossil biochronological datums. The biochronostratigraphical record from CRP-2/2A provides an important record of diatom events and mid-Cenozoic environmental changes in the Antarctic neritic zone.
Resumo:
Radiocarbon ages on CaCO3 from deep-sea cores offer constraints on the nature of the CaCO3 dissolution process. The idea is that the toll taken by dissolution on grains within the core top bioturbation zone should be in proportion to their time of residence in this zone. If so, dissolution would shift the mass distribution in favor of younger grains, thereby reducing the mean radiocarbon age for the grain ensemble. We have searched in vain for evidence supporting the existence of such an age reduction. Instead, we find that for water depths of more than 4 km in the tropical Pacific the radiocarbon age increases with the extent of dissolution. We can find no satisfactory steady state explanation and are forced to conclude that this increase must be the result of chemical erosion. The idea is that during the Holocene the rate of dissolution of CaCO3 has exceeded the rain rate of CaCO3. In this circumstance, bioturbation exhumes CaCO3 from the underlying glacial sediment and mixes it with CaCO3 raining from the sea surface.
Resumo:
Proxy indicators of sea surface temperature and equatorial divergence based on radiolarian assemblage data, and of trade wind intensity based on eolian grain size data show similar aspects of variability during the late Pleistocene: All indicators fluctuate at higher frequencies than the 100,000-year glacial-interglacial cycle, display reduced amplitude variations since 300,000 years ago, exhibit a change in the record character at about 300,000 years ago (the mid-Brunhes climatic event), and have higher amplitude variations in sediments 300,000-850,000 years old. Time series analyses were conducted to determine the spectral character of each record (delta18O of planktonic foraminifer, sea surface temperature values, equatorial divergence indicators, and wind intensity indicators) and to quantify interrecord coherence and phase relationships. The record was divided at the 300,000-year clear change in climatic variability (nonstationarity). The delta18O-based time scale is better lower in the core so our spectral analyses concentrated on the interval from 402,000-774,000 years. The delta18O spectra show 100,000- and 41,000-year power in the younger portion, 0-300,000 years, and 100,000-, 41,000- and 23,000-year power in the older interval, all highly coherent and in phase with the SPECMAP average stacked isotope record. Unlike the isotope record the dominant period in both the eolian grain size and equatorial divergence indicators is 31,000 years. This period is also important in the sea surface temperature signal where the dominant spectral peak is 100,000 years. The 31,000-year spectral component is coherent and in phase between the eolian and divergence records, confirming the link between atmospheric and ocean surface circulation for the first time in the paleoclimate record. Since the 31,000-year power appears in independent data sets within this core and also appears in other equatorial records [J. Imbrie personal communication, 1987], we assume it to be real and representative of both a nonlinear response to orbital forcing, possibly a combination of orbital tilt and eccentricity, and some resonance phenomenon required to amplify the response at this period so that it appears as a dominant frequency component. The mid-Brunhes climatic event is an important aspect of these records, but its cause remains unknown.
Resumo:
One of the objectives of the Cape Roberts Project is to study the tectonic history of the western Ross Sea region. Timing of the uplift of the Transantarctic Mountains, which are adjacent to the drillsite, will be a component of the tectonic studies (International Steering Committee, 1994; Cale Roberts Science Team, 1998a). The study of the clast samples from the core will be an important means of providing insight into the timing of uplift of the Transantarctic Mountains. Tholeiitic igneous rocks of the Jurassic (180 Ma) Ferrar large igneous province (FLIP) are widespreaded along the Transantarctic Mountains and have the potential to provide distinct indicators of erosion during uplift of the mountains. In the Transantarctic Mountains adjacent to the Cape Roberts drill site the FLIP is represented by lavas and pyroclastic of the Kirkpatrick basalts and by thick Ferrar dolerite sills which intrude the Beacon Supergroup sediments and, occasionally, the granitic basement rocks. In the Prince Albert Mountains, the youngest Kirkpatrick basalt lava is over 150 m thick, and has a very distinct high TiO2 chemical composition which is unique in the FLIP. If such rocks can be identified in the core they may provide precise timing of the initiation of uplift and denudation of the Transantarctic Mountains. Here we report on an examination of 20 Ferrar dolerite clasts. This brief report is intended as a pilot study to the examination of FLIP clasts from older drillcore.
Resumo:
Significant uncertainties persist in the reconstruction of past sea surface temperatures in the eastern equatorial Pacific, especially regarding the amplitude of the glacial cooling and the details of the post-glacial warming. Here we present the first regional calibration of alkenone unsaturation in surface sediments versus mean annual sea surface temperatures (maSST). Based on 81 new and 48 previously published data points, it is shown that open ocean samples conform to established global regressions of Uk'37 versus maSST and that there is no systematic bias from seasonality in the production or export of alkenones, or from surface ocean nutrient concentrations or salinity. The flattening of the regression at the highest maSSTs is found to be statistically insignificant. For the near-coastal Peru upwelling zone between 11-15°S and 76-79°W, however, we corroborate earlier observations that Uk'37 SST estimates significantly over-estimate maSSTs at many sites. We posit that this is caused either by uncertainties in the determination of maSSTs in this highly dynamic environment, or by biasing of the alkenone paleothermometer toward El Niño events as postulated by Rein et al. (2005).
Resumo:
Detrital modes determined on 68 sandstone samples from CRP-3 drillcore indicate a continuation of the dynamic history of uplift-related erosion and unroofing previously documented in CRP-1 and CRP-2/2A. The source area is identified very strongly with the Transantarctic Mountains (TAM) Dry Valleys block in southern Victoria Land. Initial unroofing of the TAM comprised removal of much of a former capping sequence of Jurassic Kirkpatrick basalts, which preceded the formation of the Victoria Land Basin. Erosion of Beacon Supergroup outcrops took place during progressive uplift of the TAM in the Oligocene. Earliest CRP-3 Oligocene samples above 788 metres below the sea floor (mbsf) were sourced overwhelmingly in Beacon Supergroup strata, including a recognisable contribution from Triassic volcanogenic Lashly Formation sandstones (uppermost Victoria Group). Moving up-section, by 500 mbsf, the CRP-3 samples are depauperate quartz arenites dominantly derived from the quartzose Devonian Taylor Group. Between c. 500 and 450 mbsf, the modal parameters show a distinctive change indicating that small outcrops of basement granitoids and metamorphic rocks were also being eroded along with the remaining Beacon (mainly Taylor Group) sequence. Apart from enigmatic fluctuations in modal indices above 450 mbsf, similar to those displayed by samples in CRP-2/2A, the CRP-3 modes are essentially constant (within a broad data scatter) to the top of CRP-3. The proportion of exposed basement outcrop remained at < 20 %, indicating negligible uplift (i.e. relative stability) throughout that period.
Resumo:
Most seafloor sediments are dated with radiocarbon, and the sediment is assumed to be zero-age (modern) when the signal of atmospheric testing of nuclear weapons is present (Fraction modern (Fm) > 1). Using a simple mass balance, we show that even with Fm > 1, half of the planktonic foraminifera at the seafloor can be centuries old, because of bioturbation. This calculation, and data from four core sites in the western North Atlantic indicate that, first, during some part of the Little Ice Age (LIA) there may have been more Antarctic Bottom Water than today in the deep western North Atlantic. Alternatively, bioturbation may have introduced much older benthic foraminifera into surface sediments. Second, paleo-based warming of Sargasso Sea surface waters since the LIA must lag the actual warming because of bioturbation of older and colder foraminifera.
Resumo:
The purpose of this volume, the eighth in a series of similar publications (Goodell, 1964, 1965, 1968; Frakes 1971, 1973 ; Cassidy et al., 1977a, 1977b), is to continue a presentation to the research community of sediment core descriptions and attendant data of cored and otherwise obtained sediments retrieved in waters of the Southern Ocean aboard the research vessel, ARA Islas Orcadas (formerly, USNS Eltanin), as a part of the circumpolar survey begun by Eltanin in 1962 (see issue of Antarctic Journal of the United States, Vol. 8, No. 3, 1973). The data presented herein are concerned with the results of coring activities aboard cruise 1176 of Islas Orcadas, the second marine geology coring cruise of this vessel under the terms of the present United States-Argentine agreement. The core descriptions are organised as follows: 1) a brief summary of the coring objectives of the cruise, together with a discussion of core recovery; 2) a table and map of station location data for materials retrieved; 3) a table of tentative age-dates for each piston core; 4) an explanation of the laboratory procedures and descriptive criteria used in the description of the sediments, and 5) lithologic descriptions of the piston and trigger cores, and the piston and trigger core bag samples.