Sedimentation rates calculated on surface sediment samples from different site of the Atlantic and Pacific Oceans (Table 1)


Autoria(s): Broecker, Wallace S; Klas, Mieczyslawa; Clark, Elizabeth; Bonani, Georges; Ivy, Susan; Wolfli, Willy
Cobertura

MEDIAN LATITUDE: 6.207787 * MEDIAN LONGITUDE: 0.633108 * SOUTH-BOUND LATITUDE: -17.638000 * WEST-BOUND LONGITUDE: -174.702833 * NORTH-BOUND LATITUDE: 78.225000 * EAST-BOUND LONGITUDE: 163.707000 * DATE/TIME START: 1963-08-15T00:00:00 * DATE/TIME END: 1985-08-01T00:00:00 * MINIMUM DEPTH, sediment/rock: 0.01 m * MAXIMUM DEPTH, sediment/rock: 0.34 m

Data(s)

22/02/1991

Resumo

Radiocarbon ages on CaCO3 from deep-sea cores offer constraints on the nature of the CaCO3 dissolution process. The idea is that the toll taken by dissolution on grains within the core top bioturbation zone should be in proportion to their time of residence in this zone. If so, dissolution would shift the mass distribution in favor of younger grains, thereby reducing the mean radiocarbon age for the grain ensemble. We have searched in vain for evidence supporting the existence of such an age reduction. Instead, we find that for water depths of more than 4 km in the tropical Pacific the radiocarbon age increases with the extent of dissolution. We can find no satisfactory steady state explanation and are forced to conclude that this increase must be the result of chemical erosion. The idea is that during the Holocene the rate of dissolution of CaCO3 has exceeded the rain rate of CaCO3. In this circumstance, bioturbation exhumes CaCO3 from the underlying glacial sediment and mixes it with CaCO3 raining from the sea surface.

Formato

text/tab-separated-values, 219 data points

Identificador

https://doi.pangaea.de/10.1594/PANGAEA.52464

doi:10.1594/PANGAEA.52464

Idioma(s)

en

Publicador

PANGAEA

Relação

Anderson, Robert F; Lao, Yong; Broecker, Wallace S; Trumbore, S; Hofmann, Hans J; Wolfli, Willy (1990): Boundary scavenging in the Pacific Ocean: a comparison of 10Be and 231Pa. Earth and Planetary Science Letters, 96(3-4), 287-304, doi:10.1016/0012-821X(90)90008-L

Andree, Michael; Oeschger, Hans; Broecker, Wallace S; Beavan, Nancy; Mix, Alan C; Bonani, Georges; Hofmann, Hans J; Morenzoni, Elvezio; Nessi, Marzio; Suter, Martin; Wolfli, Willy (1986): AMS radiocarbon dates on foraminifera from deep sea sediments. Radiocarbon, 28(2A), 424-428, https://journals.uair.arizona.edu/index.php/radiocarbon/article/view/951

Bard, Edouard; Arnold, Maurice; Maurice, Pierre; Duprat, Josette; Moyes, Jean; Duplessy, Jean-Claude (1987): Retreat velocity of the North Atlantic polar front during the last deglaciation determined by 14C accelerator mass spectrometry. Nature, 328, 791-794, doi:10.1038/328791a0

Berger, Wolfgang H; Killingley, John S (1982): Box cores from the equatorial Pacific: 14C sedimentation rates and benthic mixing. Marine Geology, 45(1-2), 93-125, doi:10.1016/0025-3227(82)90182-7

Berger, Wolfgang H; Killingley, John S; Metzler, CV; Vincent, Edith (1985): Two-Step Deglaciation: 14C-Dated High Resolution d18O Records from the Tropical Atlantik Ocean. Quaternary Research, 23(2), 258-271, doi:10.1016/0033-5894(85)90032-8

Broecker, Wallace S; Andree, Michael; Bonani, Georges; Wolfli, Willy; Klas, Mieczyslawa; Mix, Alan C; Oeschger, Hans (1988): Comparison between radiocarbon ages obtained on coexisting planktonic foraminifera. Paleoceanography, 3(6), 647-657, doi:10.1029/PA003i006p00647

Broecker, Wallace S; Turekian, Karl K; Heezen, Bruce C (1958): The relation of deep sea [Atlantic Ocean] sedimentation rates to variations in climate. American Journal of Science, 256(7), 503-517, doi:10.2475/ajs.256.7.503

Clark, David L; Andree, Michael; Broecker, Wallace S; Mix, Alan C; Bonani, Georges; Hofmann, Hans J; Morenzoni, Elvezio; Nessi, Marzio; Suter, Martin; Woelfli, Willy (1986): Arctic Ocean chronology confirmed by accelerator 14C dating. Geophysical Research Letters, 13(4), 319-321, doi:10.1029/GL013i004p00319

DuBois, Lisa G; Prell, Warren L (1988): Effects of carbonate dissolution on the radiocarbon age structure of sediment mixed layers. Deep-Sea Research Part A. Oceanographic Research Papers, 35(12), 1875-1885, doi:10.1016/0198-0149(88)90114-8

Duplessy, Jean-Claude; Arnold, Maurice; Maurice, Pierre; Bard, Edouard; Duprat, Josette; Moyes, Jean (1986): Direct dating of the oxygen-isotope record of the last deglaciation by 14C accelerator mass spectrometry. Nature, 320, 350-352, doi:10.1038/320350a0

Mix, Alan C; Ruddiman, William F (1985): Structure and timing of the last deglaciation: Oxygen isotope evidence. Quaternary Science Reviews, 4(2), 59-108, doi:10.1016/0277-3791(85)90015-0

Nozaki, Yoshiyuki; Cochran, J Kirk; Turekian, Karl K; Keller, Gerta (1977): Radiocarbon and 210Pb distribution in submersible-taken deep-sea cores from Project FAMOUS. Earth and Planetary Science Letters, 34(2), 167-173, doi:10.1016/0012-821X(77)90001-2

Peng, Tsung-Hung; Broecker, Wallace S; Berger, Wolfgang H (1979): Rates of benthic mixing in deep-sea sediment as determined by radioactive tracers. Quaternary Research, 11(1), 141-149, doi:10.1016/0033-5894(79)90074-7

Shackleton, Nicholas J; Berger, A; Peltier, W R (1990): An alternative astronomical calibration of the Lower Pleistocene timescale based on ODP Site 677. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 81(4), 251-261, doi:10.1017/S0263593300020782

Shackleton, Nicholas J; Duplessy, Jean-Claude; Arnold, Maurice; Maurice, Pierre; Hall, Michael A; Cartlidge, Julie E (1988): Radiocarbon age of last glacial Pacific deep water. Nature, 335, 708-711, doi:10.1038/335708a0

Slowey, Niall C; Curry, William B (1987): Structure of the glacial thermocline at Little Bahama Bank. Nature, 54, 54-58, doi:10.1038/328054a0

Direitos

CC-BY: Creative Commons Attribution 3.0 Unported

Access constraints: unrestricted

Fonte

Supplement to: Broecker, Wallace S; Klas, Mieczyslawa; Clark, Elizabeth; Bonani, Georges; Ivy, Susan; Wolfli, Willy (1991): The influence of CaCO3 dissolution on core top radiocarbon ages for deep-sea sediments. Paleoceanography, 6(5), 593-608, doi:10.1029/91PA01768

Palavras-Chave #A150/180; A180-74; Age, 14C conventional; Age, dated; also published as VM28-122; Amerasian Basin; ARK-III/3; Atlantic Ocean; BC; Box corer; Calculated; CEPAG; CH182-36; CH73-013; CH7X; DEPTH, sediment/rock; Elevation of event; EN06601; EN066-21GGC; EN066-24PG; EN066-29GGC; EN066-32GGC; EN066-34PG; EN066-39GGC; EN066-45PG; EN066-47PG; EN066-51PG; Endeavor; ERDC; ERDC-077BX; ERDC-079BX; ERDC-083BX; ERDC-092BX; ERDC-108BX; ERDC-112BX; ERDC-120BX; ERDC-123BX; ERDC-125BX; ERDC-128BX; ERDC-129BX; ERDC-131BX; ERDC-135BX; ERDC-136BX; ERDC-139BX; ERDC-141BX; Eurydice; Event label; FA-527-3; FL-124; Fram Strait; GC; Giant box corer; GIK21295-4 PS07/586; GKG; Gravity corer; INMD; INMD-097BX; INMD-101BX; INMD-104BX; INMD-109BX; INMD-110BX; INMD-111BX; INMD-113BX; INMD-115BX; Jean Charcot; Lamont-Doherty Earth Observatory, Columbia University; Latitude of event; LDEO; Le Suroît; Longitude of event; Melville; North Atlantic; Pacific Ocean; PC; Piston corer; PLDS; PLDS-066BX; PLDS-068BX; PLDS-070BX; PLDS-072BX; PLDS-074BX; PLDS-077BX; PLDS-079BX; PLDS-081BX; PLDS-083BX; PLDS-085BX; PLDS-089BX; PLDS-090BX; PLDS-092BX; PLDS-107BX; Polarstern; PS07; PS1295-4; Quaternary Environment of the Eurasian North; QUEEN; RC13; RC13-189; RC24; RC24-1; RC24-7; Reference/source; Robert Conrad; Sampling/drilling ice; Sedimentation rate; SU81-14; SU81-18; T-3; Thomas G. Thompson; TR163-31; TT154-10; TT154-5; TTXXX; V19; V19-188; V23; V23-81; V25; V25-56; V28; V28-122; V28-238; V30; V30-40; V30-41; V30-51; V32; V32-8; V33/4-14; V33-88; V35; V35-5; Vema
Tipo

Dataset