995 resultados para Reconfigurable Architecture


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper investigates relationships between modernity and monumentality in the architecture of Ludwig Mies van der Rohe. In his Modern Architecture, the critic and historian Kenneth Frampton separated Mies’ work into two historical periods, 1921-1933 and 1933-1967; the first he entitled ‘Mies van der Rohe and the significance of fact,’ the second ‘Mies van der Rohe and the monumentalisation of technique.’ The two historical periods correspond to two different geopolitical phases of Mies’ career, the first in Weimar Germany the second in the United States. By looking at a number of designs and texts made by Mies in the 1930’s and 1940’s, this essay questions the validity of separating Mies’ architecture into such clear-cut categories, where each one can enjoy a seeming independence from the other. The fulcrum for the discussion is Mies’ design of 1930 for a country golf clubhouse for the industrial town of Krefeld in north-western Germany. Our attention to the golf clubhouse design was prompted by the recent installation (2013), in which a 1-1 model of the design, made primarily from plywood, was erected in a field close the the site of Mies' original proposal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents an architecture (Multi-μ) being implemented to study and develop software based fault tolerant mechanisms for Real-Time Systems, using the Ada language (Ada 95) and Commercial Off-The-Shelf (COTS) components. Several issues regarding fault tolerance are presented and mechanisms to achieve fault tolerance by software active replication in Ada 95 are discussed. The Multi-μ architecture, based on a specifically proposed Fault Tolerance Manager (FTManager), is then described. Finally, some considerations are made about the work being done and essential future developments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wireless sensor networks (WSNs) have attracted growing interest in the last decade as an infrastructure to support a diversity of ubiquitous computing and cyber-physical systems. However, most research work has focused on protocols or on specific applications. As a result, there remains a clear lack of effective, feasible and usable system architectures that address both functional and non-functional requirements in an integrated fashion. In this paper, we outline the EMMON system architecture for large-scale, dense, real-time embedded monitoring. EMMON provides a hierarchical communication architecture together with integrated middleware and command and control software. It has been designed to use standard commercially-available technologies, while maintaining as much flexibility as possible to meet specific applications requirements. The EMMON architecture has been validated through extensive simulation and experimental evaluation, including a 300+ node test-bed, which is, to the best of our knowledge, the largest single-site WSN test-bed in Europe to date.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Due to the application of active components into antennas these became a source of distortion on wireless communication systems. In this paper we explore the nonlinear effects occurring in a frequency reconfigurable antenna operating with a PIN Diode. We describe the measurement setup used to check the antenna intermodulation products and the measured compression and third order intermodulation limitations of a frequency reconfigurable antenna, operating at the UMTS and WLAN frequencies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a layered Smart Grid architecture enhancing security and reliability, having the ability to act in order to maintain and correct infrastructure components without affecting the client service. The architecture presented is based in the core of well design software engineering, standing upon standards developed over the years. The layered Smart Grid offers a base tool to ease new standards and energy policies implementation. The ZigBee technology implementation test methodology for the Smart Grid is presented, and provides field tests using ZigBee technology to control the new Smart Grid architecture approach. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes a possible implementation of a compact printed monopole antenna, useful to operate in UMTS and WLAN bands. In order to accomplish that, a miniaturization technique based on the application of chip inductors is used in conjunction with frequency reconfiguration capability. The chip inductors change the impedance response of the monopole, allowing to reduce the resonant frequency. In order to be able to operate the antenna in these two different frequencies, an antenna reconfiguration technique based on PIN diodes is applied. This procedure allows the change of the active form of the antenna leading to a shift in the resonant frequency. The prototype measurements show good agreement with the simulation results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Prototype validation is a major concern in modern electronic product design and development. Simulation, structural test, functional and timing debug are all forming parts of the validation process, although very often addressed as dissociated tasks. In this paper we describe an integrated approach to board-level prototype validation, based on a set of mandatory/optional BST instructions and a built-in controller for debug and test, that addresses the late mentioned tasks as inherent parts of a whole process

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is already more than 10 years that weblabs are seen as important resources to provide the experimental work required in engineering education. Several weblabs have been applied in engineering courses, but there are still unsolved problems related to the development of their infrastructures. For solving some of those problems, it was implemented a weblab with a reconfigurable infrastructure compliant with the IEEE1451.0 Std. and supported by Field Programmable Gate Array (FPGA) technology. This paper presents the referred weblab, and provides and analyses a set of researchers' opinions about the implemented infrastructure, and the adopted methodology for the conduction of real experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dynamically reconfigurable SRAM-based field-programmable gate arrays (FPGAs) enable the implementation of reconfigurable computing systems where several applications may be run simultaneously, sharing the available resources according to their own immediate functional requirements. To exclude malfunctioning due to faulty elements, the reliability of all FPGA resources must be guaranteed. Since resource allocation takes place asynchronously, an online structural test scheme is the only way of ensuring reliable system operation. On the other hand, this test scheme should not disturb the operation of the circuit, otherwise availability would be compromised. System performance is also influenced by the efficiency of the management strategies that must be able to dynamically allocate enough resources when requested by each application. As those resources are allocated and later released, many small free resource blocks are created, which are left unused due to performance and routing restrictions. To avoid wasting logic resources, the FPGA logic space must be defragmented regularly. This paper presents a non-intrusive active replication procedure that supports the proposed test methodology and the implementation of defragmentation strategies, assuring both the availability of resources and their perfect working condition, without disturbing system operation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To boost logic density and reduce per unit power consumption SRAM-based FPGAs manufacturers adopted nanometric technologies. However, this technology is highly vulnerable to radiation-induced faults, which affect values stored in memory cells, and to manufacturing imperfections. Fault tolerant implementations, based on Triple Modular Redundancy (TMR) infrastructures, help to keep the correct operation of the circuit. However, TMR is not sufficient to guarantee the safe operation of a circuit. Other issues like module placement, the effects of multi- bit upsets (MBU) or fault accumulation, have also to be addressed. In case of a fault occurrence the correct operation of the affected module must be restored and/or the current state of the circuit coherently re-established. A solution that enables the autonomous restoration of the functional definition of the affected module, avoiding fault accumulation, re-establishing the correct circuit state in real-time, while keeping the normal operation of the circuit, is presented in this paper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To increase the amount of logic available in SRAM-based FPGAs manufacturers are using nanometric technologies to boost logic density and reduce prices. However, nanometric scales are highly vulnerable to radiation-induced faults that affect values stored in memory cells. Since the functional definition of FPGAs relies on memory cells, they become highly prone to this type of faults. Fault tolerant implementations, based on triple modular redundancy (TMR) infrastructures, help to keep the correct operation of the circuit. However, TMR is not sufficient to guarantee the safe operation of a circuit. Other issues like the effects of multi-bit upsets (MBU) or fault accumulation, have also to be addressed. Furthermore, in case of a fault occurrence the correct operation of the affected module must be restored and the current state of the circuit coherently re-established. A solution that enables the autonomous correct restoration of the functional definition of the affected module, avoiding fault accumulation, re-establishing the correct circuit state in realtime, while keeping the normal operation of the circuit, is presented in this paper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To increase the amount of logic available to the users in SRAM-based FPGAs, manufacturers are using nanometric technologies to boost logic density and reduce costs, making its use more attractive. However, these technological improvements also make FPGAs particularly vulnerable to configuration memory bit-flips caused by power fluctuations, strong electromagnetic fields and radiation. This issue is particularly sensitive because of the increasing amount of configuration memory cells needed to define their functionality. A short survey of the most recent publications is presented to support the options assumed during the definition of a framework for implementing circuits immune to bit-flips induction mechanisms in memory cells, based on a customized redundant infrastructure and on a detection-and-fix controller.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Trabalho Final de Mestrado para obtenção do grau de Mestrado em Engenharia Electrónica e Telecomunicações

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Single processor architectures are unable to provide the required performance of high performance embedded systems. Parallel processing based on general-purpose processors can achieve these performances with a considerable increase of required resources. However, in many cases, simplified optimized parallel cores can be used instead of general-purpose processors achieving better performance at lower resource utilization. In this paper, we propose a configurable many-core architecture to serve as a co-processor for high-performance embedded computing on Field-Programmable Gate Arrays. The architecture consists of an array of configurable simple cores with support for floating-point operations interconnected with a configurable interconnection network. For each core it is possible to configure the size of the internal memory, the supported operations and number of interfacing ports. The architecture was tested in a ZYNQ-7020 FPGA in the execution of several parallel algorithms. The results show that the proposed many-core architecture achieves better performance than that achieved with a parallel generalpurpose processor and that up to 32 floating-point cores can be implemented in a ZYNQ-7020 SoC FPGA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes an FPGA-based architecture for onboard hyperspectral unmixing. This method based on the Vertex Component Analysis (VCA) has several advantages, namely it is unsupervised, fully automatic, and it works without dimensionality reduction (DR) pre-processing step. The architecture has been designed for a low cost Xilinx Zynq board with a Zynq-7020 SoC FPGA based on the Artix-7 FPGA programmable logic and tested using real hyperspectral datasets. Experimental results indicate that the proposed implementation can achieve real-time processing, while maintaining the methods accuracy, which indicate the potential of the proposed platform to implement high-performance, low cost embedded systems.