1000 resultados para QUANTUM CRYSTALLITES


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electronic structure, Zeeman splitting, and Stark shift of In1-yMnyAs1-xNx oblate quantum dots are studied using the ten-band k center dot p model including the sp-d exchange interaction between the carriers and the magnetic ion. The Zeeman splitting of the electron ground states is almost isotropic. The Zeeman splitting of the hole ground states is highly anisotropic, with an anisotropy factor of 918 at B=0.1 T. The Zeeman splittings of some of the electron and hole excited states are also highly anisotropic. It is because of the spin-orbit coupling which couples the spin states with the anisotropic space-wave functions due to the anisotropic shape. It is found that when the magnetic quantum number of total orbital angular momentum is nearly zero, the spin states couple with the space-wave functions very little, and the Zeeman splitting is isotropic. Conversely, if the magnetic quantum number of total orbital angular momentum is not zero, the space-wave functions in the degenerate states are different, and the Zeeman splitting is highly anisotropic. The electron and hole Stark shifts of oblate quantum dots are also highly anisotropic. The decrease of band gap with increasing nitrogen composition is much more obvious in the smaller radius case because the lowest conduction level is increased by the quantum confinement effect and is closer to the nitrogen level. (C) 2007 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A systematic investigation of the strain distribution of self-organized, lens-shaped quantum dot in the case of growth direction on (001) substrate was presented. The three-dimensional finite element analysis for an array of dots was used for the strain calculation. The dependence of the strain energy density distribution on the thickness of the capping layer was investigated in detail when the elastic characteristics of the matrix material were anisotropic. It is shown that the elastic anisotropic greatly influences the stress, strain, and strain energy density in the quantum dot structures. The anisotropic ratio of the matrix material and the combination with different thicknesses of the capping layer, may lead to different strain energy density minimum locations on the capping layer surface, which can result in various vertical ordering phenomena for the next layer of quantum dots, i.e. partial alignment, random alignment, and complete alignment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper focuses on the study of carrier channels of multimodal-sized quantum dots formed on patterned substrate by a rate-equation-based model. Surface-mediated indium adatom migration is revealed by a direct comparison between quantum dot wetting layer, which acts as carrier channel, formed on a flat substrate and on a patterned substrate. For the assessment of suitability, the carrier channel of the dot-in-well structure has also been studied by the present model, and the transition energies of the carrier channel (e.g., InGaAs quantum well) obtained from theoretical simulation agree fairly well with those obtained from the reflectance measurements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mode gain spectrum is measured by the Fourier series expansion method for InAs/GaAs quantum-dot (QD) lasers with seven stacks of QDs at different injection currents. Gain spectra with distinctive peaks are observed at the short and long wavelengths of about 1210 nm and 1300 nm. For a QD laser with the cavity length of 1060 mu m, the peak gain of the long wavelength first increases slowly or even decreases with the injection current as the peak gain of the short wavelength increases quickly, and finally increases quickly before approaching the saturated values as the injection current further increases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We introduce the concept of the Loschmidt echo (LE) to the space of the reduced density matrix of spin and fermionic systems to study the density matrix LEs (DMLEs) of the one-dimensional extended Hubbard model and the transverse field Ising model. Our results show that the DMLEs are remarkably influenced by the criticality of the system, and the method is a convenient way to study quantum phase transitions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ground states and degree of entanglement of double hydrogenic impurities in a pair of vertically stacked InGaAs/GaAs quantum dots are studied with a proposed diagonalization technique. It is found that at short barrier widths, the entanglement is small due to the coupling between the intra- and interdot orbitals. At large barrier widths, large entanglement occurs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electronic structure and Zeeman splittings of wurtzite Cd1-xMnxSe quantum spheres are studied using the k center dot p method and mean-field model. It is interesting to find that the Zeeman splittings of some hole states in quantum spheres are highly anisotropic due to the spin-orbit coupling and wurtzite crystal structure. The anisotropy of the Zeeman splittings of hole ground states in large dots is large, while that in small dot is small because the hole ground states vary with radius. An external electrical field can change the Zeeman splitting significantly, and tune the g factor from nearly 0 to about 100.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The subbands of the ground state E-c1, the first excited state E-c2 and heavy hole state E-HH1 are calculated by solving the eigenvalues of effective-mass Hamiltonian H-0 which is derived from eight-band k . p theory and the calculations are performed at k(x) = k, = k = 0 for the three-dimensional array of InGaAs/GaAs quantum dots (QDs). With indium content in InGaAs QDs gradually increasing from 30% to 100%,the intersubband transition wavelength of E-c2 to E-c1, blue-shifts from 18.50 to 11.87 mu m,while the transition wavelength of E-c1, to E-HH1, red-shifts from 1. 04 to 1. 73 mu m. With the sizes of Ir-0.5 Ga-0.5 As and InAs QDs increasing from 1.0 to 5.0 nm, the intersubband transition from E-c1, to E-C2 transforms from bound-state-to-continuum-state to bound-state-to-bound-state, and the corresponding intersubband transition wavelengths red-shift from 8.12 pm (5.90 pm) to 53.47 mu m (31.87 pm), respectively, and the transition wavelengths of E-C1 to E-HH1 red-shift from 1. 13 mu m (1.60 mu m) to 1.27 mu m (2.01 mu m), respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of InAs deposition thickness on the structural and optical properties of InAs/InAlAs quantum wires (QWR) superlattices (SLS) was studied. The transmission electron microscopy (TEM) results show that with increasing the InAs deposited thickness, the size uniformity and spatial ordering of InAs QWR SLS was greatly improved, but threading dislocations initiated from InAs nanowires for the sample with 6 monolayers (MLs) InAs deposition. In addition, the zig-zag features along the extending direction and lateral interlink of InAs nanowires were also observed. The InAs nanowires, especially for the first period, were laterally compact. These structural features may result in easy tunneling and coupling of charge carriers between InAs nanowires and will hamper their device applications to some extent. Some suggestions are put forward for further improving the uniformity of the stacked InAs QWRs, and for suppressing the formation of the threading dislocations in InAs QWR SLS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate plasmon excitations in a quantum wire that consists of an infinite one-dimensional array of vertically coupled InAs/GaAs strained quantum dots (QDs). The research is carried out in the framework of random-phase approximation using effective-mass theory. Our formalism is capable of studying plasmons with strong tunneling among QDs, which frustrate the conventionally adopted tight-binding approximation. Based on this formalism, a systematic study on the intraminiband or intrasubband plasmon in vertically coupled InAs/GaAs strained QDs is presented. It is found that an increase of the dot spacing will inevitably reduce the plasmon energy. In contrast, the role of dot height is relatively complex and depends on the dot spacing. The results demonstrate the possibility to engineer collective excitations in low dimensional systems by simply changing their geometric configuration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Double-state lasing phenomena are easily observed in self-assembled quantum dot (QD) lasers. The effect of inter-level relaxation rate and cavity length on the double-state lasing performance of QD lasers is investigated on the basis of a rate equation model. Calculated results show that, for a certain cavity length, the ground state (GS) lasing threshold current increases almost linearly with the inter-level relaxation lifetime. However, as the relaxation rate becomes slower, the ratio of excited state (ES) lasing threshold current over the GS one decreases, showing an evident exponential behavior. A relatively feasible method to estimate the inter-level relaxation lifetime, which is difficult to measure directly, is provided. In addition, fast inter-level relaxation is favorable for the GS single-mode lasing, and leads to lower wetting layer (WL) carrier occupation probability and higher QD GS capture efficiency and external differential quantum efficiency. Besides, the double-state lasing effect strongly depends on the cavity length. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this review, the potential of mode-locked lasers based on advanced quantum-dot ( QD) active media to generate short optical pulses is analysed. A comprehensive review of experimental and theoretical work on related aspects is provided, including monolithic-cavity mode-locked QD lasers and external-cavity mode-locked QD lasers, as well as mode-locked solid-state and fibre lasers based on QD semiconductor saturable absorber mirrors. Performance comparisons are made for state-of-the-art experiments. Various methods for improving important characteristics of mode-locked pulses such as pulse duration, repetition rate, pulse power, and timing jitter through optimization of device design parameters or mode-locking methods are addressed. In addition, gain switching and self-pulsation of QD lasers are also briefly reviewed, concluding with the summary and prospects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electronic structures of N quantum dot molecules (QDMs) are investigated theoretically in the framework of effective-mass envelope function theory. The electron and hole energy levels are calculated. In the calculations, the effects of finite offset and valence-band mixing are taken into account. The theoretical method can be used to calculate the electronic structures of any QDM. The results show that (1) electronic energy levels decrease monotonically and the energy difference between the N QDMs decreases as the quantum dot (QD) radius increases; (2) the electron energy level is lower and quantum confinement is smaller for the larger N QDM; (3) the hole ground state energy level is lower for the one dot QDM than N (greater 1) QDMs if the QD radius is larger than about 5 nm due to the valence-band mixing. The results are useful for the application of the N QDM to photoelectric devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Self-organized InAs quantum dots (QDs) have been fabricated by molecular beam epitaxy. The authors try to use a slow positron beam to detect defects in and around self-organized QDs, and point defects are observed in GaAs cap layer above QDs. For the self-organized InAs QDs without strain-reducing layer, it is free of defects. However, by introducing a strain-reducing layer, the density of point defects around larger sized InAs QDs increased. The above results suggest that low energy positron beam measurements may be a good approach to detect depth profiles of defects in QD materials. (c) 2007 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on our recent work on quantum transport [X. Q. Li , Phys. Rev. B 71, 205304 (2005)], we show how an efficient calculation can be performed for the current noise spectrum. Compared to the classical rate equation or the quantum trajectory method, the proposed approach is capable of tackling both the many-body Coulomb interaction and quantum coherence on an equal footing. The practical applications are illustrated by transport through quantum dots. We find that this alternative approach is in a certain sense simpler and more straightforward than the well-known Landauer-Buttiker scattering matrix theory.