996 resultados para Proton conductivity


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polypyrrole is a material with immensely useful properties suitable for a wide range of electrochemical applications, but its development has been hindered by cumbersome manufacturing processes. Here we show that a simple modification to the standard electrochemical polymerization method produces polypyrrole films of equivalently high conductivity and superior mechanical properties in one-tenth of the polymerization time. Preparing the film as a series of electrodeposited layers with thorough solvent washing between layering was found to produce excellent quality films even when layer deposition was accelerated by high current. The washing step between the sequentially polymerized layers altered the deposition mechanism, eliminating the typical dendritic growth and generating nonporous deposits. Solvent washing was shown to reduce the concentration of oligomeric species in the near-electrode region and hinder the three-dimensional growth mechanism that occurs by deposition of secondary particles from solution. As artificial muscles, the high density sequentially polymerized films produced the highest mechanical work output yet reported for polypyrrole actuators.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simplified wet-spinning process for the production of continuous poly (3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) fibers is reported. Conductivity enhancement of PEDOT:PSS fibers up to 223 S cm−1 has been demonstrated when these fibers are exposed to ethylene glycol as a post-synthesis processing step. In a new spinning approach it is shown that by employing a spinning formulation consisting of an aqueous blend of PEDOT:PSS and poly(ethlylene glycol), the need for post-spinning treatment with ethylene glycol is eliminated. With this approach, 30-fold conductivity enhancements from 9 to 264 S cm−1 are achieved with respect to an untreated fiber. This one-step approach also demonstrates a significant enhancement in the redox properties of the fibers. These improvements are attributed to an improved molecular ordering of the PEDOT chains in the direction of the fiber axis and the consequential enrichment of linear (or expanded-coil like) conformation to preference bipolaronic electronic structures as evidenced by Raman spectroscopy, solid-state electron spin resonance (ESR) and in situ electrochemical ESR studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Catalyst support materials exhibit great influence on the performance and durability of proton exchange membrane (PEM) fuel cells. This minireview article summarises recent developments into carbon nanotube-based support materials for PEM fuel cells, including the membrane electrode assembly (MEA). The advantages of using CNTs to promote catalyst performance and stability, a perspective on research directions and strategies to improve fuel cell performance and durability are discussed. It is hoped that this minireview will act as a conduit for future developments in catalyst supports and MEA design for PEM fuel cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Porous carbon nanotube/polyvinylidene fluoride (CNT/PVDF) composite material can be fabricated via formation and freeze-drying of a gel. The field emission scanning electron microscopy, nitrogen adsorption-desorption and pore size distribution analysis reveal that the introduction of a small amount of carbon nanotubes (CNTs) can effectively increase the surface roughness and porosity of polyvinylidene fluoride (PVDF). Contact angle measurements of water and oil indicate that the as-obtained composite material is superhydrophobic and superoleophilic. Further experiments demonstrate that these composite material can be efficiently used to separate/absorb the insoluble oil from oil polluted water as membrane/absorbent. Most importantly, the electrical conductivity of such porous CNT/PVDF composite material can be tuned by adjusting the mass ratio of CNT to PVDF without obviously changing the superhydrophobicity or superoleophilicity. The unique properties of the porous CNT/PVDF composite material make it a promising candidate for oil-polluted water treatment as well as water-repellent catalyst-supporting electrode material.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is a challenge to retain the high stretchability of an elastomer when used in polymer composites. Likewise, the high conductivity of organic conductors is typically compromised when used as filler in composite systems. Here, it is possible to achieve elastomeric fiber composites with high electrical conductivity at relatively low loading of the conductor and, more importantly, to attain mechanical properties that are useful in strain-sensing applications. The preparation of homogenous composite formulations from polyurethane (PU) and poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) that are also processable by fiber wet-spinning techniques are systematically evaluated. With increasing PEDOT:PSS loading in the fiber composites, the Young's modulus increases exponentially and the yield stress increases linearly. A model describing the effects of the reversible and irreversible deformations as a result of the re-arrangement of PEDOT:PSS filler networks within PU and how this relates to the electromechanical properties of the fibers during the tensile and cyclic stretching is presented. Conducting elastomeric fibers based on a composite of polyurethane (PU) and PEDOT:PSS, produced by a wet-spinning method, have high electrical conductivity and stretchability. These fibers can sense large strains by changes in resistance. The PU/PEDOT:PSS fiber is optimized to achieve the best strain sensing. PU/PEDOT:PSS fibers can be produced on a large scale and integrated into conventional textiles by weaving or knitting. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Supramolecular ionic networks combine singular properties such as self-healing behaviour and ionic conductivity. In this work we present an insight into the ionic conductivity and molecular dynamic behaviour of an amorphous and semicrystalline supramolecular ionic networks (iNets) that were synthesised by self-assembly of difunctional imidazolium dicationic molecules coupled with (trifluoromethane-sulfonyl) imide dianionic molecules. Relatively low ionic conductivity values were obtained for the semicrystalline iNet below its melting point (Tm =101°C) in comparison with the amorphous iNet for which the conductivity significantly increased (~3 orders of magnitude) above 100°C. Upon LiTFSI doping, the semicrystalline iNet reached conductivity values ~ 10-3 Scm-1 due to enhanced mobility of the network which was supported by solid-state static NMR. Furthermore, the overlapping of 19F and 7Li resonance lines from both the semicrystalline network and the LiTFSI suggests fast molecular motions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is an increasing demand for high performance composites with enhanced mechanical and electrical properties. Carbon nanofibres offer a promising solution but their effectiveness has been limited by difficulty in achieving directional alignment. Here we report the use of an alternating current (AC) electric field to align carbon nanofibres in an epoxy. During the cure process of an epoxy resin, carbon nanofibres (CNFs) are observed to rotate and align with the applied electric field, forming a chain-like structure. The fracture energies of the resultant epoxy nanocomposites containing different concentrations of CNFs (up to 1.6wt%) are measured using double cantilever beam specimens. The results show that the addition of 1.6wt% of aligned CNFs increases the electrical conductivity of such nanocomposites by about seven orders of magnitudes to 10<sup>-2</sup>S/m and increases the fracture energy, G<inf>Ic</inf>, by about 1600% from 134 to 2345J/m<sup>2</sup>. A modelling technique is presented to quantify this major increase in the fracture energy with aligned CNFs. The results of this research open up new opportunities to create multi-scale composites with greatly enhanced multifunctional properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel thermo-mechanical shrinking method is reported to fabricate a three dimensional (3D) stretchable and highly conductive micro-wrinkled reduced graphene oxide (MWrGO) supported on an elastic polydimethylsiloxane (PDMS) substrates. This 3D rGO architecture not only increases the specific area for more electrons to pass through but also bestows stretchability to the conductive pathway. The structural change of micro-wrinkles has been monitored by an in situ straining microscopy. The electrical conductivity of the samples remained fairly constant and stayed above 25 S/m under low deformation (no more than 30% strain) for up to 500 mechanical stretching-release cycles. Additionally, the MWrGO/PDMS composite can be stretched bi-axially because the shrinking process itself is isotropic. This MWrGO based stretchable composite with stable electrical properties and long life span could form a new platform of stretchable electronics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on the thermal, structural and conductivity properties of the organic ionic plastic crystal (OIPC) N-methyl-N-methyl-pyrrolidinium dicyanamide [C1mpyr][N(CN)2] mixed with the sodium salt Na[N(CN)2]. The DSC thermal traces indicate that an isothermal transition, which may be a eutectic melting, occurs at ~ 89 °C, below which all compositions are entirely in the solid phase. At 20 mol% Na[N(CN)2], this transition is the final melt for this mixture, and a new liquidus peak grows beyond 20 mol% Na[N(CN)2]. The III- > II solid-solid phase transition continues to be evident at ~- 2 °C. The microstructure for all the mixtures indicated a phase separated morphology where precipitates can be clearly observed. Most likely, these precipitates consist of a Na-rich second phase. This was also suggested from the vibrational spectroscopy and the 23Na NMR spectra. The lower concentrations of Na[N(CN)2] present complex 23Na MAS spectra, suggesting more than one sodium ion environment is present in these mixtures consistent with complex phase behavior. Unlike other OIPCs where the ionic conductivity usually increases upon doping or mixing in a second component, the conductivity of these mixtures remains relatively constant and above 10- 4 S cm- 1 at ∼ 80 °C, even in the solid state. Such high conductivities suggest these materials may be promising to be used for all solid-state electrochemical devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Membrane integrity, as measured by electrical conductivity (EC), is suggested as an indicator of seed vigor in soybean [Glycine max (L.) Merrill] seeds. This study evaluated the effect of storage time and temperature on EC of six soybean seed lots (two lots each of high, medium and low vigor). All seed lots were adjusted to 120 g kg(-1) seed moisture, sealed in aluminum foil packets and placed in storage at 10 and 20 degreesC or stored unsealed in multi-wall paper bags in warehouse (WH) conditions at Lexington, KY, USA for 486 days. Four of the six seed lots were also stored unsealed at 10 degreesC. All seed lots were sampled at 3-month intervals and evaluated for seed moisture (SMC), standard germination (SG) and vigor [accelerated aging (AA) and EC]. After 91 and 204 days in storage, samples initially stored at 20 degreesC and WH were moved to 10 degreesC and sampled at the same intervals. Seed moisture content for unsealed samples equilibrated at 107 g kg(-1) (+/-9 g kg(-1)) in both the WH and 10 degreesC environments. No change in SG occurred for seeds stored sealed (120 g kg(-1)) at 10 degreesC, except for the low vigor seed lots which declined significantly at the last sample date. The AA germination declined significantly for all, seed lots stored sealed at 10 degreesC, however the EC did not change during the same storage period. Seeds stored sealed at 20 degreesC and unsealed in the WH showed rapid declines in AA and SG and significant increases in EC. When these seeds were moved to 10 degreesC, however, the AA continued to decline while the EC remained at the same level (no significant change) for the remainder of the seed storage period. Thus whilst the AA declined in all environments, the EC only increased at higher temperatures (20 degreesC, WH) but showed little change during storage at 10 degreesC. Thus, precautions must be taken if using EC to measure soybean seed vigor following storage at 10 degreesC.